Form A (version 2) UCPR [enter UCPR rule]

DETAILED CONTAMINATION SITE INVESTIGATION REPORT 230 Grange Avenue, Marsden Park

COURT DETAILS

Court

Land and Environment Court of New South Wales

Class

1

Case number

2019/376150

TITLE OF PROCEEDINGS

Applicant

Universal Property Group Pty Ltd

Respondent

Blacktown City Council

FILING DETAILS

Filed for

Universal Property Group Pty Ltd, Applicant

Legal representative

Emma Fleming, Swaab

Legal representative reference

EJF: 191205

Contact name and telephone


Emma Fleming, 9777 8319

Contact email

ejf@swaab.com.au

DETAILED CONTAMINATION SITE INVESTIGATION REPORT

ADDRESS: 230 Grange Ave, Marsden Park NSW

CLIENT: Bathla Group

REPORT No: NE083

DATE: 27 January 2017

GEOTESTA PTY LTD | ABN 91851620815 | 44 Mary Parade, Rydalmere NSW 2116

Phone: 1300 852216 | Fax: 03 9562 9098 | email: info@geotesta.com.au

Contents

1.	INT	RODUCTION	1
2.	ОВЈ	ECTIVE AND SCOPE	2
3.	SITI	E DESCRIPTION	3
	3.1	Site Location and Topography	3
	3.2	Geological and Soil Logging Settings	3
	3.3	Site History Records	3
	3.4	Site Regional Meteorology and Hydrogeology	3
	3.5	NSW OEH Records	4
	3.6	Historical Aerial Photograph Analysis	4
	3.7	Walkover Site Inspection	4
	3.8	Area of Environmental Concern	4
4.	FIEI	DWORK PROGRAM	5
5.	LAB	ORATORY PROGRAM	6
6.	SUB	SURFACE CONDITIONS	7
7.	RES	ULTS OF INVESTIGATION	8
	7.1	Assessment Criteria	8
	7.2	Test Results	8
	7.3	Exiting Onsite Sheds/Dwellings/Stockpilings/Site fillings	9
8.	ASS	ESSMENTS AND RECOMMENDATIONS	11
9.	REF	ERENCES	12

Appendices

- A Figures and Table
- **B** Laboratory Test Results
- **C** Previous Reports

1. INTRODUCTION

Geotesta was engaged to investigate the contamination of the sites referred to as 230 Grange Ave Marsden Park, NSW. This detailed site investigation was commissioned by Bathla Group.

The site contains dwellings, sheds, greenhouses, nursery, stockpiles and site fillings. The site is currently vacant and was previously used as a greenhouse and nursery property (Marsden Park Plants and Pots). The preliminary site investigations performed by Martens & Associates Pty Ltd [1] have noted environmental concerns from asbestos, pesticides, heavy metals, potentially spilled or leaked contaminating chemicals and fuel, oil and lead based paints.

A development application (DA) has been submitted to Blacktown City Council. It is understood that the site is proposed for development into a residential subdivision comprising of medium density residential blocks, roads and communal open spaces. Prior to the DA being approved, Council has requested that a detailed site investigation is undertaken so as to assess the potential environmental concerns.

This report is based only on the information provided at the time of this report preparation and may not be valid if changes are made to the site conditions and/or soil and groundwater.

2. OBJECTIVE AND SCOPE

The objective of this detailed study is to evaluate the site contamination with regard to the proposed development and potential contaminations presenting risk to human health and/or the environment as a result of previous and current land use.

The general objective to be adhered is recommending the suitability of the site for residential development in relation to the management of contamination.

The scope of work carried out to achieve this objective consisted of:

- Performing a desktop assessment of the available information on the site history from aerial photographs and historical titles search
- Searching records on previous notices issued by OEH and Blacktown City Council SEPP (SRGC) 2006: R3
- Evaluating the preliminary site investigation, salinity and geotechnical site investigation reports
- Inspecting the site to identify apparent or suspected areas of contamination and undertaking soil samplings across the site
- Planning a range of laboratory environmental tests
- Preparing a report summarising above

3. SITE DESCRIPTION

3.1 Site Location and Topography

Investigation area is situated at 230 Grange Ave Marsden Park, NSW. The site location is shown in Figure 2. The subject site is located on the western side of Richmond Road and northern side of Grange Ave. The site is trapezoidal in shape and its area is approximately 1.1ha. The site lengths along the Richmond Rd and Grange Ave are 65m and 200m, respectively. The site is gently sloping to the west. The site is within the Blacktown City Council [1].

Site 230 Grange Ave is a green house and nursery property with existing dwellings, sheds, stockpiles, green houses and nurseries. The site is bound by site 1032 Richmond Rd to the north, 232 Grange Ave to the west, Grange Ave to the south and Richmond Rd to the east. Marsden Park Primary School is located approximately 800m north, and a Caltex petrol station is located adjacent to the school's southern boundary.

At the time of investigation, the site was occupied by a single storey building, sheds, green houses, stockpiles, nurseries which are currently vacant.

3.2 Geological and Soil Logging Settings

The Penrith 1:100,000 Geological Series (1991) indicates that the site is underlain by Bringelly Shale which comprises shale, carbonaceous claystone, claystone, laminite, fine to medium grained lithic sandstone and rare coal/tuff. The NSW Environment and Heritage eSPADE website identifies the site as having soils of the Blacktown soil landscapes consisting of shallow to moderately deep hard setting mottled texture contrast soils, red and brown podzolic soils on crests grading to yellow podzic soils on lower slopes and in drainage lines.

3.3 Site History Records

Development application and building plan records kept by Blacktown City Council show that a development application made for a dwelling in 1981. The site history records are shown in Table 1.

3.4 Site Regional Meteorology and Hydrogeology

The following climate information from the Commonwealth Bureau of Meteorology website can be obtained [3]:

- Maximum temperature medians of 29.1°C for December to February in Richmond station
- Minimum temperature medians of 16.9°C for December to February Richmond station

Mean annual Rainfall of 619.9mm in Willmot (Resolution Ave), weather station 67116
 (approximately 3.8 km from Marsden Park)

The rainfall data for the area surrounding the site suggests that at some parts of the year, large volumes of water may flow across the site, however given the good housekeeping and drainage system this is likely to drain off the site and not infiltrate into the subsoil.

Review of NSW Department of Primary Industries - Office of Water database indicated some groundwater bores within 200m in the south of the site. Site geotechnical investigations to 4.5 m in the Richmond road area did not encounter groundwater [4].

3.5 NSW OEH Records

The site or nearby surrounding areas have no notices under the Contaminated Land Management Act (1997) or the Environmentally Hazardous Chemicals Act (1985) [1].

3.6 Historical Aerial Photograph Analysis

Historical aerial photographs taken from the site for 1947, 1955, 1965, 1977, 1986, 1998, 2007 and 2015 indicate that the site has been used for residential purposes since at least from 1998 [1]. The history of aerial photography is demonstrated in Table 2.

3.7 Walkover Site Inspection

Results of site walkover inspection on October 26 and 27, 2015 carried out by Martens are summarised in Table 3. The walkover inspection on 6th and 13th December 2016 confirms records of Table 3 and no change was observed.

3.8 Area of Environmental Concern

Based on available site history, aerial photograph interpretation and site walkovers, Martens [1] provided site area of Environmental Concerns (AECs) and Contaminants of Primary Concern (COPCs) in Table 4. A plan showing locations of identified AECs is presented in Figure 3. Geotesta desk study, and walkover site inspection confirms the suggestions by Martens.

4. FIELDWORK PROGRAM

Fieldwork for this investigation was carried out on the 6th and 13th December 2016 and included excavation of 8 boreholes (BH1 to BH8). All boreholes were advanced by hand auger to depths varying from 100mm to 1000mm below the existing ground surface. The borehole locations are demonstrated in Figure 4. Environmental soil samples were collected from surface and at lower depths. Australian Standard (AS 4482.1—2005) procedures were used for sampling. Soil samples were collected by hand (disturbed samples) using disposable gloves which were changed between each sample. The auger was washed between each sampling to make sure no contamination is transferred. Individual samples were taken for laboratory analysis. Soil samples were placed into laboratory prepared glass jars and placed in a cooler (esky) with ice. Having collected the samples, they were transported to the laboratory within the correct holding times. A trip spike sample was stored with the samples to assess volatile loss.

5. LABORATORY PROGRAM

Selected soil samples were analysed for contamination concerns consisting of;

- Heavy metals (HM) Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu),
 Mercury (Hg), Lead (Pb), Nickel (Ni) and Zinc (Zn)
- Organochlorine Pesticides (OCP).
- Organophosphate pesticides (OPP)
- Total Recoverable Hydrocarbons (TRH)
- Benzene, Toluene, Ethyl Benzene and Xylene (BTEX)
- Polycyclic Aromatic Hydrocarbon (PAH)
- Polychlorinated Biphenyls (PCB)
- Asbestos

The soil analysis was performed by Eurofins MGT, a laboratory accredited by the National Association of Testing Authorities (NATA).

The above contaminants include those which are commonly encountered on agricultural/farming and rural sites. The analytical program is presented in Table 5. Laboratory results are attached to this report in Appendix B.

6. SUBSURFACE CONDITIONS

A summary of subsurface soil conditions encountered in the site is presented below:

Topsoil

Topsoil was encountered in all boreholes consisting loose to medium dense Clayey Gravel. Materials were generally described as grey. Thickness of this profile was found to be approximately 250mm.

Natural Soil

Natural Clay (brown/grey) with medium to high plasticity was encountered ranging in depth between 0.25m and 0.30m below existing ground surface. The natural clay was found to have gravel bands at lower depths. Based on the visual inspections, the natural clay was found to be very stiff to hard.

Bedrock

Base on the geotechnical site investigation report [4], the bed rock was not encountered to maximum investigation depth of 2.5m in site. The Shale bedrock is encountered in Richmond Rd area at depths varying from 3.6m to 4.0m below existing ground surface [4].

Groundwater

The geotechnical site investigation report [4] demonstrates that the groundwater was not encountered (maximum investigation depth of 2.5m).

7. RESULTS OF INVESTIGATION

7.1 Assessment Criteria

Based on the information received from Bathla Group, the site is proposed to be used for medium density residential units. The most appropriate criteria are therefore those which are protective of the residential users of the site.

The results of laboratory tests for this study were compared with the published Australian contamination assessment criteria. These Criteria are presented in the Australian and New

Zealand Guidelines for the Assessment and Management of Contaminated Sites, 1992 [5]. The Office of Environment and Heritage (OEH) endorses the use of these guidelines for the assessment of contaminated sites.

NSW OEH and National Environmental Health Forum (NEHF) [6] is also commonly used to assess contaminant concentrations.

The National Environmental Health Forum criteria [7] are health based soil investigation levels for different exposure settings.

For this assessment, the criteria for a standard residential setting with garden/accessible soil (HIL's A) is considered appropriate and is used as the Site Criteria. Assessment of TRH and BTEX was based on the DEC Guideline for Assessing Service Station Sites [8].

Guidelines issued under the Protection of the Environment Operations Act 1997 which relate to waste classification for disposal are also considered relevant [9] for this contamination assessment.

The results of laboratory analysis of collected site samples have been directly compared with the above-mentioned criteria.

7.2 Test Results

The sample IDs, sample depths and test requests are shown in Table 5. The results of the lab tests presented in Appendix B are summarized below.

Heavy Metals

A total of eight (8) samples (BH1-8) were analysed for a range of heavy metals consisting of As, Cd, Cr, Cu, Pb, Hg, Ni and Zn.

All samples were found to have heavy metals concentrations to be within the adopted Site Criteria.

- · Arsenic concentrations ranging from 2-12mg/kg.
- Cadmium concentrations were less than 0.4mg/kg.
- Total Chromium concentrations ranging from 10-610mg/kg.
- Copper concentrations ranging from 5-51 mg/kg.
- Lead concentrations ranging from 5-300 mg/kg.
- Mercury concentrations ranging from <0.1mg/kg.
- Nickel concentrations ranging from 5-19 mg/kg.
- Zinc concentrations ranging from 10-350mg/kg.

Organochlorine Pesticides/ Organophosphorus Pesticides

A total of five (5) samples (BH1, 2, 4, 5 and 7) were analysed for a range of organochlorine and Organophosphorus pesticides. All concentrations of OCP/OPP were found to be below the laboratory detection limit and therefore within the adopted Site Criteria.

Polycyclic Aromatic Hydrocarbons

A total of three (3) samples (BH2, 4 and 6) were analysed for a range of PAH. All concentrations of PAH were found to be below the laboratory detection limit and therefore within the adopted Site Criteria.

Total Recoverable Hydrocarbons - 1999 NEPM Fractions

A total of three (3) samples (BH2, 4 and 6) were analysed for TRH. All samples analysed were found to have concentrations of TRH below the laboratory detection limit.

Total Recoverable Hydrocarbons - 2013 NEPM Fractions

A total of three (3) samples (BH2, 4 and 6) were analysed for TRH. All samples analysed were found to have concentrations of TRH below the laboratory detection limit.

Benzene, Toluene, Ethyl Benzene and Xylene

A total of three (3) samples (BH2, 4 and 6) were analysed for BTEX. All samples analysed were found to have concentrations of BTEX below the laboratory detection limit.

Asbestos

A total of four (4) samples (BH1, 3, 5 and 8) were tested for Asbestos. From all the samples, no asbestos detected. Only organic fibre detected. No respirable fibres detected.

7.3 Exiting Onsite Sheds/Dwellings/Stockpilings/Site fillings

During the detailed investigation, a one storey building, several greenhouse sheds, stockpiles and a massive site filling were observed onsite. This was identified in the preliminary site investigation as well. The sampling of these materials will be carried out

after the demolition of the buildings and sheds and removal of the stockpiling and all the site fillings in the western part of the site for validating the site.

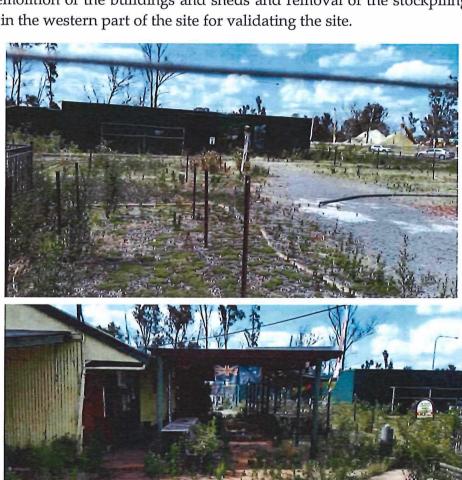


Figure 1: Dwellings, sheds and site fillings in the site

8. ASSESSMENTS AND RECOMMENDATIONS

A detailed contamination site investigation of the property 230 Grange Ave, Marsden Park, NSW, was undertaken by Geotesta in order to investigate the presence of contamination on the site. The investigations included a review of site history, a site inspection, laboratory testing and soil sampling and analysis program. Soil sampling was performed in 8 locations (BH1 to BH8). The results of the site inspection and sampling indicated the site to be predominantly underlain by topsoil (clayey Gravel) sand overlying natural medium to high plasticity clay. 8 selected samples were analysed for a range of contaminants consisting of Heavy metals - Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Lead (Pb), Nickel (Ni) and Zinc (Zn), Organochlorine Pesticides (OCP)/ Organophosphorus Pesticides (OPP), Total recoverable Hydrocarbons (TRH), Benzene, Toluene, Ethyl Benzene and Xylene (BTEX), Polycyclic Aromatic Hydrocarbons (PAH) and Asbestos.

Based on the laboratory test results, the site was found to have concentrations of contaminants of concern to be within the adopted Site Criteria and therefore the risk of gross ground contamination is considered low.

Based on the assessment undertaken, the following conclusion and recommendations can be made:

- Based on the scope of works undertaken in this investigation, the site is considered suitable for the proposed land use for residential development.
- As described in Section 7.3, additional sampling is required after demolition of the existing building, sheds and removal of the stockpiles and site fillings observed in the site.

9. REFERENCES

- [1] Martens Consulting Engineers, Preliminary Site Investigation: Lots 59 and 173 Richmond Road, 1032, 1036, 1060, 1070, 1080, 1082, 1086, 1132, 1140, 1148 and 1160 Richmond Road, and 230, 232 and 234 Grange Avenue, Marsden Park, NSW, December 2015
- [2] Clark, N.R., and Jones, D.C., (Eds) (1991) Penrith 1:100 000 Geological Sheet. New South Wales Geological Survey, Sydney
- [3] Bureau of Meteorology 2013, www.bom.gov.au
- [4] Martens Consulting Engineers, Preliminary Salinity and Geotechnical Assessment: Lots 59 and 173 Richmond Road, 1032, 1036, 1060, 1070, 1080, 1082, 1086, 1132, 1140, 1148 and 1160 Richmond Road, and 230, 232 and 234 Grange Avenue, Marsden Park, NSW, December 2015
- [5] Australian & New Zealand Guidelines for the Assessment and Management of Contaminated Sites, Australian and New Zealand Conservation Council and National Health and Medical Research Council, 1992
- [6] Health Based Soil Investigation Levels, National Environmental Health Forum Monographs Soil Series No. 1-1996
- [7] Assessment of Site Contamination-Measure 1999 National Environment Protection
- [8] Guidelines for Assessment Service Station Sites NSW EPA 1994
- [9] NSW DECCW (2009) Waste Classification Guidelines Part 1: Classifying Waste NSW EPA (1995) Contaminated Sites: Sampling Design Guidelines
- [10] NSW OEH (2011) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites
- [11] National Environment Protection Council (Assessment of Site Contamination) Measure 1999, 2013 amendment
- [12] Australia Standard 1726 (AS, 1993) Geotechnical site investigations.

Information about this report

The report contains the results of a geotechnical investigation conducted for a specific purpose and client. The results should not be used by other parties, or for other purposes, as they may contain neither adequate nor appropriate information. In particular, the investigation does not cover contamination issues unless specifically required to do so by the client.

Test Hole Logging

The information on the test hole logs (boreholes, test pits, exposures etc.) is based on a visual and tactile assessment, except at the discrete locations where test information is available (field and/or laboratory results). The test hole logs include both factual data and inferred information.

Groundwater

Unless otherwise indicated, the water levels presented on the test hole logs are the levels of free water or seepage in the test hole recorded at the given time of measuring. The actual groundwater level may differ from this recorded level depending on material permeability (i.e. depending on response time of the measuring instrument). Further, variations of this level could occur with time due to such effects as seasonal, environmental and tidal fluctuations or construction activities. Confirmation of groundwater levels, phreatic surfaces or piezometric pressures can only be made by appropriate instrumentation techniques and monitoring programmes.

Interpretation of Results

The discussion or recommendations contained within this report normally are based on a site evaluation from discrete test hole data. Generalized, idealized or inferred subsurface conditions (including any geotechnical cross-sections) have been assumed or prepared by interpolation and/or extrapolation of these data. As such these conditions are an interpretation and must be considered as a guide only.

Change in Conditions

Local variations or anomalies in the generalized ground conditions do occur in the natural environment, particularly between discrete test hole locations. Additionally, certain design or construction procedures may have been assumed in assessing the soil-structure interaction behaviour of the site. Furthermore, conditions may change at the site from those encountered at the time of the geotechnical investigation through construction activities and constantly changing natural forces.

Any change in design, in construction methods, or in ground conditions as noted during construction, from those assumed or reported should be referred to GEOTESTA for appropriate assessment and comment.

Geotechnical Verification

Verification of the geotechnical assumptions and/or model is an integral part of the design process investigation, construction verification, and performance monitoring. Variability is a feature of the natural environment and, in many instances, verification of soil or rock quality, or foundation levels, is required. There may be a requirement to extend foundation depths, to modify a foundation system or to conduct monitoring as a result of this natural variability. Allowance for verification by geotechnical personnel accordingly should be recognized and programmed during construction.

Reproduction of Reports

Where it is desired to reproduce, the information contained in our geotechnical report, or other technical information, for the inclusion in contract documents or engineering specification of the subject development, such reproductions should include at least all of the relevant test hole and test data, together with the appropriate standard description sheets and remarks made in the written report of a factual or descriptive nature. Reports are the subject of copyright and shall not be reproduced either totally or in part without the express permission of Geotesta.

Appendix A

Figures and Table

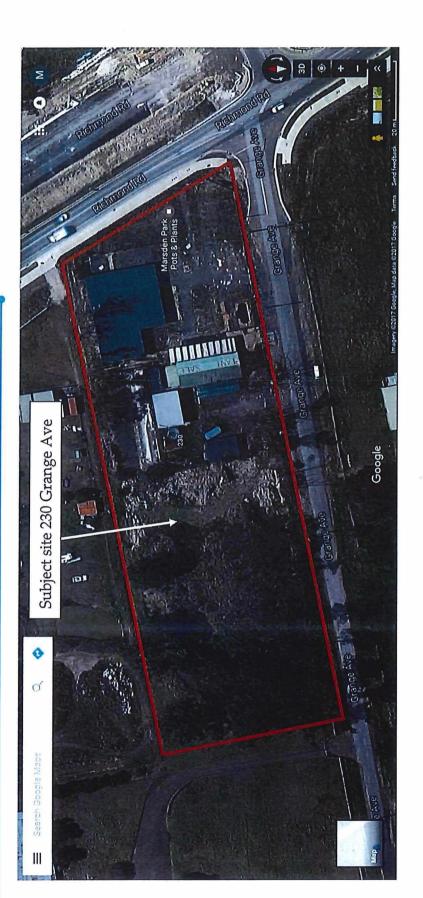


Figure 2: Site Location

	※			۵۵	
Dwelling +	Sheds and	Stockpiles	Green house	Nursery	Site Fillings
curtilage	former				ŭ
	sneas				

Figure 3: Areas of Contamination Concerns [1]



Figure 4: Borehole Locations

Table 1: Site History Information [1]

Description	Dwelling	Landscape supply business and rural dwelling	Dwelling – alterations / additions
Record No.	DA-80-4431	DA-88-88	BA-88-2809
Year	1981	1988	1988
Lot ID/Address	230 Grange Avenue		250 Glarige Averioe

Table 2: Historic Aerial Photograph Observation from 1947-Current [1]

Year	Description	Surrounding land use
1947	Denser tree cover remaining on	on Rural land uses to north east and south. Undeveloped bushland to west.
	majority of 230 Grange Avenue.	Market gardens, orchards, and dams in rural lands. Local road
		infrastructure visible.
1955	Some clearing in eastern and western	Rural land use to north east and south. Some market gardens to east no
ù	portions of 230 Grange Avenue.	longer visible, others established. More intensive use of land
		immediately south of Grange Avenue.
1998	Previous dwelling/shed on 230 Grange	Previous dwelling/shed on 230 Grange Surrounding rural land use, with some dwellings/sheds removed, others
	Avenue removed, lot cleared and	Avenue removed, lot cleared and constructed. Poultry shed constructed to east. Additional market
u	dwelling and/or sheds constructed in	dwelling and/or sheds constructed in gardens visible to north east. Additional trotting tracks to north and
	the central area of the lot.	south east.
2007	Some sheds constructed, others	others Continued rural land use, with some dwellings/sheds removed, others
	removed on 230 Grange Avenue.	constructed. Market gardens to south and some market gardens to east
		no longer visible. Some trotting tracks to north no longer as defined.

Table 3: Summary of Site Walkover by Martens in October 2015 [1]

The second name of the second na	The second secon	
Address and Lot ID	Lot Infrastructure	Walkover Summary
230 Grange Road (Lot 20, DP	Metal and timber sheds	Lot currently used as a plant nursey, Parklea Plants and Pots / Marsden Park Pots and Plants.
[[9]5]2]	Greenhouses and	Metal and timber shed used as an office and retail sales area.
	tormer greenhouses	Open paved and gravel retail nursery area in eastem portion of lot for plants and other garden and landscaping products.
	Shipping container	Concrete and tiled in ground pool near southern boundary.
	Metal AST	Greenhouse constructed of corrugated iron, metal and shadecloth in north eastern portion of lot with hare earth and arrayal floor with concrete
	Retail nursery	paths, and containing plants.
		Metal and plastic greenhouse structure to west of greenhouse, currently dismantling structure.
		Metal shed to north west of office/shed with concrete floor in good condition, containing vehicles, motorbike, tractors, pots, wheels, tyres,

Shipping container to west of office/shed, unable to access shipping container.

Metal AST, rusty and in poor condition on broken concrete bunding to north of shipping container.

containers of unknown content, pumps, containers labelled paint, tools and other miscellaneous items.

Table 3: To be continued

Address and Lot ID	Lot Infrastructure	Walkover Summary
		Stockpiles near southem boundary, including plastic pots, plants, timber pallets, metal trailers for use in the nursery, corrugated iron, timber, plastic pipe, metal pipes, drums and containers of unknown content, and general rubbish.
		Burnt area near western boundary.
		Significant site filling observed in westem portion of lot, covered in grass, trees and other vegetation. Concrete blocks forming a retaining wall observed near the western edge of filled area.
		Watercourse in westem portion of lot, draining north to farm dam on neighbouring property.
		Filled area observed to west of watercourse.

Table 4: Areas of Environmental Concern and Contaminants of Primary Concern [1]

AEC 1	Potential for Contamination	COPC	Contamination Likelihood
A – Dwellings and former dwellings	Pesticides and heavy metals may have been used underneath dwellings for pest control. Dwelling construction may include ACM and/or lead based paints.	HM, OCP/OPP and asbestos	Medium
B – Sheds and former sheds – unable to gain access to some	Sheds may currently (or have previously) stored fuel, oils, or containers/drums of unknown content; asbestos sheeting (PACM); pesticides and/or been treated with heavy metals and pesticides (pest control). Shed construction may include ACM and/or lead based paints.	HM, TRH, BTEX, PAH, OCP/OPP and asbestos	Medium - high
D - Site filling	Fill material of unknown origin and quality.	HM, TRH, BTEX, PAH, OCP/OPP and asbestos	Medium
E - Stockpiles	Contaminants from unknown contents of stockpiles, containers/drums of unknown conlent, and general refuse may have spilled or leaked onto underlying soil.	HM, TRH, BTEX, PAH, OCP/OPP and asbestos	Medium - high
L- Greenhouses	Application of agricultural chemicals, use of pesticides and heavy metals for pest control during site use as greenhouses.	HM and OCP/OPP	Medium
M - NUrsery	Application of agricultural chemicals, use of pesticides and heavy metals for pest control during site use as nursery.	HM and OCP/OPP	Медіит

Table 5: Samples Depth and Requested Lab Tests

Sample ID (BH)	Depth (m)	HM	OCP/OPP	R17	Asbestos
BH1	0.20	×	×		×
ВН2	0.25		×	×	
ВН3	0.10	×			×
BH4	0.40		×	×	
BH5	1.00	×	×		×
ВН6	0.55			×	
ВН7	0.70	×	×		
ВН8	0.80	×			×

HM: Heavy metal

OCP: Organochloride pesticides

OPP: Organophosphate pesticides

R17: Total Recoverable Hydrocarbons - 1999 NEPM Fractions: Volatile Organics

Total Recoverable Hydrocarbons - 2013 NEPM Fractions

Polycyclic Aromatic Hydrocarbons, Organochlorine Pesticides

Polychlorinated Biphenyls (PCB), Spectated Phenols, Total Recoverable Hydrocarbons - 2013

NEPM Fractions, Chromium (hexavalent), Cyanide (total) and Fluoride

Heavy Metals such as arsenic, copper, lead, etc., Total Recoverable Hydrocarbons - 1999 NEPM

Fractions, TRH: Total recoverable hydrocarbons

PAH: Polycyclic aromatic hydrocarbons

BTEX: Benzene, toluene, ethyl benzene, xylene

Table 6: National Environmental Protection Measures Health Based Investigation Levels (2013)

	Hen	lth-based investiga	tion levels (mg/kg)	Commercial industrial D				
Chemical	Residential ¹ A	Residential ¹ B	Recreational ¹ C					
Netar								
		500	300	3 000				
	60	90	90	500				
Boron	4500	40 000	20 000	300 000				
CALLY CARRIED AND CONTROL OF THE PARTY.	20	150	90	900				
	100	500	300	3600				
EL PROPORTINO	100	600	300	4000				
	6000	30 000	17 000	240 000				
	300	1200	600	1 500				
	3800	14 000	19 000	60 000				
		120	80	730				
	10		13	180				
		1200	1200	6 000				
AND THE CONTRACTOR OF THE CONT			700	10 000				
	7400	60 000	30 000	400 000				
Cyanide (free)	2000			1 500				
Cobalt								
Carcinogenic PAHs (as BaP TEQ) ⁶ 3 4 3 40 Total PAHs ⁷ 300 400 300 4000 Phenols Phenol 3000 45 000 40 000 240 000 Pentachlorophenol 100 130 120 660 Cresols 400 4 700 4 000 25 000 Organochlorine Pesticides								
	3	4	3	40				
Total PAHs ⁷	300	400	300	4000				
Chemical Residential A Residential B Recreational C Industrial D								
Phenol	3000	45 000	40 000	240 000				
Pentachlorophenol		130	120	660				
Cresols	400	4 700	4 000	25 000				
Table Tabl								
Pentachlorophenol 100 130 120 660 Cresols 400 4 700 4 000 25 000 Organochlorine Pesticides DDT+DDE+DDD 240 600 400 3600 Aldrin and dieldrin 6 10 10 45 Chlordane 50 90 70 530 Endosulfan 270 400 340 2000								
Aldrin and dieldrin	6	10	10	45				
	50	90	70	530				
Endosulfan	270	400	340	2000				
Endrin	10	20	20	100				
Heptachlor	6	10	10	50				
HCB	10	15	10	80				
	300	500	400					
Mirex	10	20	20	100				
Toxaphene	_							
		No. 1000,414						
r ICIOI AIII		Total Control	5/00	35000				
		Pesticides						
Atrazine	320	470	400	2500				
Chlorpyrifos	160	340	250	2000				
7/5								
Section Sect								
non 8								
	1	1	1	7				
				d discountry.				
(Br1-Br9)	1	2	2	10				

Notes:

- (1) Generic land uses are described in detail in NEMP Schedule B7 Section 3
- HIL A @ Residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake (no poultry), also includes childcare centres, preschools and primary schools.
- HIL B @ Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.
- HIL C @ Public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths. This does not include undeveloped public open space where the potential for exposure is lower and where a site-specific assessment may be more appropriate.
- HIL D @ Commercial/industrial, includes premises such as shops, offices, factories and industrial sites.
- (2) Arsenic: HIL assumes 70% oral bioavailability. Site-specific bioavailability may be important and should be considered where appropriate (refer NEPM Schedule B7).
- (3) Lead: HIL is based on blood lead models (IEUBK for HILs A, B and C and adult lead model for HIL D where 50% oral bioavailability has been considered. Site-specific bioavailability may be important and should be considered where appropriate.
- (4) Methyl mercury: assessment of methyl mercury should only occur where there is evidence of its potential source. It may be associated with inorganic mercury and anaerobic microorganism activity in aquatic environments. In addition, the reliability and quality of sampling/analysis should be considered.
- (5) Elemental mercury: HIL does not address elemental mercury. A site-specific assessment should be considered if elemental mercury is present, or suspected to be present,
- (6) Carcinogenic PAHs: HIL is based on the 8 carcinogenic PAHs and their TEFs (potency relative to B(a)P) adopted by CCME 2008 (refer Schedule B7). The B(a)P TEQ is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF, given below, and summing these products.

Appendix B Laboratory Test Results

mgt

Geotesta P/L 6/31-37 Howleys Rd Notting Hill VIC 3168

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Amir Farazmand

Report

528172-S

Project name

230 GRANGE AVE

Project ID

NE083

Received Date

Dec 16, 2016

Client Sample ID			вн1	ВН2	вн3	ВН4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-De17801	S16-De17802	S16-De17803	S16-De17804
Date Sampled			Dec 06, 2016	Dec 06, 2016	Dec 06, 2016	Dec 06, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fra		1				
TRH C6-C9	20	mg/kg	-	< 20	-	< 20
TRH C10-C14	20	mg/kg	-	< 20	-	< 20
TRH C15-C28	50	mg/kg	-	< 50	-	< 50
TRH C29-C36	50	mg/kg	-	< 50	-	< 50
TRH C10-36 (Total)	50	mg/kg	_	< 50	-	< 50
BTEX						
Benzene	0.1	mg/kg	-	< 0.1	=	< 0.1
Toluene	0.1	mg/kg	-	< 0.1	-	< 0.1
Ethylbenzene	0.1	mg/kg	a	< 0.1	= =	< 0.1
m&p-Xylenes	0.2	mg/kg	=	< 0.2		< 0.2
o-Xylene	0.1	mg/kg	-	< 0.1	-	< 0.1
Xylenes - Total .	0.3	mg/kg		< 0,3	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	72	-	72
Total Recoverable Hydrocarbons - 2013 NEPM Frac	ctions					
Naphthalene ^{N02}	0.5	mg/kg		< 0.5	-	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg		< 50	-	< 50
TRH C6-C10	20	mg/kg		< 20	-	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20	-	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	0.6	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	1.2	-	1.2
Acenaphthene	0.5	mg/kg		< 0.5	-	< 0.5
Acenaphthylene	0.5	mg/kg		< 0.5	-	< 0.5
Anthracene	0.5	mg/kg	-	< 0.5	-	< 0.5
Benz(a)anthracene	0.5	mg/kg		< 0.5	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	-	< 0.5
Chrysene	0.5	mg/kg	-	< 0.5		< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	1/ 1/ <u></u>	< 0.5	-	< 0.5
Fluoranthene	0.5	mg/kg	-	< 0.5	-	< 0.5
Fluorene	0.5	mg/kg	-	< 0.5	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5		< 0.5

Client Sample ID			ВН1	ВН2	ВН3	ВН4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-De17801	S16-De17802	S16-De17803	S16-De17804
Date Sampled			Dec 06, 2016	Dec 06, 2016	Dec 06, 2016	Dec 06, 2016
Test/Reference	LOR	Unit	Dec 00, 2010	Dec 00, 2010	Dec 00, 2010	BCC 00, 2010
Polycyclic Aromatic Hydrocarbons	LOR	Unit			<u> </u>	
M. Anna A. Ann	0.5			405		105
Naphthalene	0.5	mg/kg	-	< 0.5 < 0.5	-	< 0.5 < 0.5
Phenanthrene	0.5	mg/kg	-	< 0.5	-	< 0.5
Pyrene Total PAH*	0.5	mg/kg	-	< 0.5	-	100 FARE
2-Fluorobiphenyl (surr.)	1	mg/kg %	-	59	-	< 0.5 90
p-Terphenyl-d14 (surr.)	1 1	%	_	57	-	87
Organochlorine Pesticides		70	-	57	-	07
Chlordanes - Total	0.4		101	101		101
	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	1-	< 0.05
Aldrin b-BHC	0.05	mg/kg	< 0.05 < 0.05	< 0.05 < 0.05	-	< 0.05 < 0.05
d-BHC	0.05	mg/kg mg/kg	< 0.05	< 0.05	-	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05		< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05		< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.2	-	< 0.2
Toxaphene	1	mg/kg	< 1	< 1		< 1
Dibutylchlorendate (surr.)	1	%	77	101		88
Tetrachloro-m-xylene (surr.)	1	%	70	108		98
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	_	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2		< 0.2
Coumaphos	2	mg/kg	< 2	< 2	-	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	H	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2		< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	J.	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2

Client Sample ID		81 10 14	вн1	ВН2	внз	BH4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-De17801	S16-De17802	S16-De17803	S16-De17804
Date Sampled			Dec 06, 2016	Dec 06, 2016	Dec 06, 2016	Dec 06, 2016
Test/Reference	LOR	Unit			Secretary of the second	See seed to be seen as a
Organophosphorus Pesticides	1 2011	1 Orin				
Fenthion	0.2	mg/kg	< 0.2	< 0.2	_	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	-	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Omethoate	2	mg/kg	< 2	< 2	-	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2		< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Triphenylphosphate (surr.)	1	%	90	95	-	82
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
TRH >C10-C16	50	mg/kg	-	< 50	-	< 50
TRH >C16-C34	100	mg/kg	æ	< 100	-	< 100
TRH >C34-C40	100	mg/kg	=	< 100	-	< 100
0 dualisits (4.5	T -	uS/cm		400		100
Conductivity (1:5 aqueous extract at 25°C)	5			160		9.0
pH (1:5 Aqueous extract)	0.1	pH Units		9.1		
% Moisture		70	2.0	17	15	2.7
Heavy Metals .	1 2	malles	40	4.5	< 2	< 2
Arsenic	2	mg/kg mg/kg	12 < 0.4	4.5 < 0.4	< 0.4	< 0.4
Cadmium	0.4 5		110	610	190	350
Chromium		mg/kg				45
Copper	5	mg/kg	21	12	7.8	11
Lead	5	mg/kg	24 < 0.1			< 0.1
Mercury	0.1	mg/kg		< 0.1	< 0.1	
Nickel	5	mg/kg	19	14	11	15
Zinc	5	mg/kg	44	69	53	71

Client Sample ID			BH5	BH6	BH7	ВН8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-De17805	S16-De17806	S16-De17807	S16-De17808
Date Sampled	*		Dec 06, 2016	Dec 06, 2016	Dec 06, 2016	Dec 06, 2016
Test/Reference	LOR	Unit	_			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	20	mg/kg	=	< 20	# .	-
TRH C10-C14	20	mg/kg		< 20	÷	•
TRH C15-C28	50	mg/kg	-	< 50	-	-
TRH C29-C36	50	mg/kg		< 50	-	-
TRH C10-36 (Total)	50	mg/kg	-	< 50	*	-

Client Sample ID			BH5	вн6	ВН7	вн8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-De17805	S16-De17806	S16-De17807	S16-De17808
Date Sampled			Dec 06, 2016	Dec 06, 2016	Dec 06, 2016	Dec 06, 2016
Test/Reference	LOR	Unit				
BTEX	LON	1 Offic				1
Benzene	0.1	mg/kg	-	< 0.1	-	<u> </u>
Toluene	0.1	mg/kg		< 0.1	-	1
Ethylbenzene	0.1	mg/kg		< 0.1	-	
m&p-Xylenes	0.2	mg/kg		< 0.2		+ :
o-Xylene	0.1	mg/kg		< 0.1		1 -
Xylenes - Total	0.3	mg/kg		< 0.3		-
4-Bromofluorobenzene (surr.)	1	// // // // // // // // // // // // //	-	74	_	
Total Recoverable Hydrocarbons - 2013 NEPM		, ,,		1-7-		
Naphthalene ^{No2}	0.5	mg/kg	_	< 0.5	_	_
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg		< 50	_	_
TRH C6-C10	20	mg/kg		< 20	-	
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	<u> </u>	< 20		-
Polycyclic Aromatic Hydrocarbons	20	Ingrig		120		
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg		< 0.5	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg		0.6	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	1.2	-	_
Acenaphthene	0.5	mg/kg	-	< 0.5	-	-
Acenaphthylene	0.5	mg/kg	-	< 0.5	-	-
Anthracene	0.5	mg/kg		< 0.5	-	-
Benz(a)anthracene	0.5	mg/kg	-	< 0.5	-	-
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	-	<u> </u>
Benzo(b&j)fluoranthene ^{No7}	0.5	mg/kg	_	< 0.5	<u> </u>	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	_	_
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	_	_
Chrysene	0.5	mg/kg	-	< 0.5	_	-
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	<u>-</u>	_
Fluoranthene	0.5	mg/kg	-	< 0.5	_	_
Fluorene	0.5	mg/kg	-	< 0.5	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	-	- '
Naphthalene	0.5	mg/kg	_	< 0.5	_	0 - 2
Phenanthrene	0.5	mg/kg	3	< 0.5		u a x
Pyrene	0.5	mg/kg	-	< 0.5	-	-
Total PAH*	0.5	mg/kg	-	< 0.5	-	-
2-Fluorobiphenyl (surr.)	1	%	-	94	-	-
p-Terphenyl-d14 (surr.)	1	%	-	89	-	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	-	< 0.1	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	< 0.05	8=4
4.4'-DDE	0.05	mg/kg	< 0.05	-	< 0.05	
4.4'-DDT	0.05	mg/kg	< 0.05	7-	< 0.05	
a-BHC	0.05	mg/kg	< 0.05	=	< 0.05	n=
Aldrin	0.05	mg/kg	< 0.05	-	< 0.05	s=.
b-BHC	0.05	mg/kg	< 0.05	-	< 0.05	8=3
d-BHC	0.05	mg/kg	< 0.05	-	< 0.05	-
Dieldrin	0.05	mg/kg	0.12	-	< 0.05	S=1
Endosulfan I	0.05	mg/kg	< 0.05	-	< 0.05	X=.
Endosulfan II	0.05	mg/kg	< 0.05	-	< 0.05	5 -
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	< 0.05	×=
Endrin	0.05	mg/kg	< 0.05	-	< 0.05	-

mgt

Client Sample ID			BH5	BH6	BH7 Soil	BH8 Soil
Sample Matrix		-	Soil	Soil		
Eurofins mgt Sample No.			S16-De17805	S16-De17806	S16-De17807	S16-De17808
Date Sampled			Dec 06, 2016	Dec 06, 2016	Dec 06, 2016	Dec 06, 2016
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Endrin aldehyde	0.05	mg/kg	< 0.05	-	< 0.05	-
Endrin ketone	0.05	mg/kg	< 0.05	-	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	< 0.05	-
Heptachlor	0.05	mg/kg	< 0.05	-	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	< 0.05		< 0.05	-
Hexachlorobenzene	0.05	mg/kg	< 0.05) -	< 0.05	-
Methoxychlor	0.05	mg/kg	< 0.05	-	< 0.2	-
Toxaphene	1	mg/kg	<1	-	<1	-
Dibutylchlorendate (surr.)	1	%	52	-	113	-
Tetrachloro-m-xylene (surr.)	1	%	75	-	98	-
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	-	< 0.2	-
Bolstar	0.2	mg/kg	< 0.2		< 0.2	-
Chlorfenvinphos	0.2	mg/kg	< 0.2	-	< 0.2	-
Chlorpyrifos	0.2	mg/kg	< 0.2	-	< 0.2	-
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	-	< 0.2	-
Coumaphos	2	mg/kg	< 2	-	< 2	-
Demeton-S	0.2	mg/kg	< 0.2	-	< 0.2	-
Demeton-O	0.2	mg/kg	< 0.2	-	< 0.2	-
Diazinon	0.2	mg/kg	< 0.2	-	< 0.2	-
Dichlorvos	0.2	mg/kg	< 0.2	<u>₩</u>	< 0.2	-
Dimethoate	0.2	mg/kg	< 0.2	-	< 0.2 < 0.2	-
Disulfoton	0.2	mg/kg	< 0.2	-	< 0.2	
EPN	0.2	mg/kg	< 0.2 < 0.2	-	< 0.2	
Ethion	0.2	mg/kg mg/kg	< 0.2		< 0.2	_
Ethoprop	0.2	mg/kg	< 0.2	-	< 0.2	+ ·
Ethyl parathion	0.2	mg/kg	< 0.2	-	< 0.2	-
Fenitrothion Fensulfothion	0.2	mg/kg	< 0.2	_	< 0.2	
Fenthion	0.2	mg/kg	< 0.2	-	< 0.2	-
Malathion	0.2	mg/kg	< 0.2	-	< 0.2	-
Merphos	0.2	mg/kg	< 0.2	_	< 0.2	-
Methyl parathion	0.2	mg/kg	< 0.2	-	< 0.2	-
Mevinphos	0.2	mg/kg	< 0.2	-	< 0.2	-
Monocrotophos	2	mg/kg	< 2	-	< 2	*
Naled	0.2	mg/kg	< 0.2	-	< 0.2	-
Omethoate	2	mg/kg	< 2	-	< 2	-
Phorate	0.2	mg/kg	< 0.2	-	< 0.2	-
Pirimiphos-methyl	0.2	mg/kg	< 0.2	-	< 0.2	-
Pyrazophos	0.2	mg/kg	< 0.2	-	< 0.2	-
Ronnel	0.2	mg/kg	< 0.2	-	< 0.2	-
Terbufos	0.2	mg/kg	< 0.2	-	< 0.2	-
Fetrachlorvinphos	0.2	mg/kg	< 0.2	_	< 0.2	-
Tokuthion	0.2	mg/kg	< 0.2	-	< 0.2	-
Trichloronate	0.2	mg/kg	< 0.2	-	< 0.2	-
Triphenylphosphate (surr.)	1	%	84	-	104	-
Total Recoverable Hydrocarbons - 2013 NEPN	l Fractions					×
TRH >C10-C16	50	mg/kg	-	< 50	-	-
TRH >C16-C34	100	mg/kg	-	< 100	-	-
TRH >C34-C40	100	mg/kg		< 100	-	-

Client Sample ID		1	BH5	ВН6	ВН7	рцо
Sample Matrix			Soil	Soil	Soil	BH8
The received the proof to the proof of the p					5011	Soil
Eurofins mgt Sample No.			S16-De17805	S16-De17806	S16-De17807	S16-De17808
Date Sampled			Dec 06, 2016	Dec 06, 2016	Dec 06, 2016	Dec 06, 2016
Test/Reference	LOR	Unit				
		-				
Conductivity (1:5 aqueous extract at 25°C)	5	uS/cm	-	99	-	=
pH (1:5 Aqueous extract)	0.1	pH Units	-	7.8	-	_
% Moisture	1	%	7.2	4.0	4.9	4.6
Heavy Metals						
Arsenic	2	mg/kg	8.8	< 2	4.6	4.7
Cadmium	0.4	mg/kg	0.8	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	41	19	16	10
Copper	5	mg/kg	51	< 5	13	41
Lead	5	mg/kg	300	< 5	27	16
Mercury	0.1	mg/kg	0.2	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	15	12	< 5	10
Zinc	5	mg/kg	350	10	46	77

mgt

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

	Description	Testing Site	Extracted	Holding Time					
	M Exemption Suite -The excavated natural material order 2014 NSW EPA(excluding Foreign Material)								
	Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Dec 20, 2016	14 Day					
	- Method: TRH C6-C36 - LTM-ORG-2010								
	BTEX	Sydney	Dec 19, 2016	14 Day					
	- Method: TRH C6-C40 - LTM-ORG-2010								
	Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 19, 2016	14 Day					
	- Method: TRH C6-C40 - LTM-ORG-2010								
	Polycyclic Aromatic Hydrocarbons	Sydney	Dec 20, 2016	14 Day					
	- Method: E007 Polyaromatic Hydrocarbons (PAH)								
	Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 20, 2016	14 Day					
	- Method: TRH C6-C40 - LTM-ORG-2010		D 00 0040	7.0					
	Conductivity (1:5 aqueous extract at 25°C)	Sydney	Dec 22, 2016	7 Day					
	- Method: LTM-INO-4030	0.1	D 00 0040	7 D					
	pH (1:5 Aqueous extract)	Sydney	Dec 22, 2016	7 Day					
	- Method: LTM-GEN-7090 pH in soil by ISE	0 1	D 40 0040	00 D					
	Metals M8	Sydney	Dec 19, 2016	28 Day					
	- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS								
	Eurofins mgt Suite B14	Condense	Dec 20, 2016	14 Day					
	Organochlorine Pesticides	Sydney	Dec 20, 2016	14 Day					
	- Method: E013 Organochlorine Pesticides (OC)	Melbourne	Dec 20, 2016	14 Day					
	Organophosphorus Pesticides	Melbourne	Dec 20, 2016	14 Day					
	- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS	Cudnov	Dec 16, 2016	14 Day					
	% Moisture	Sydney	Dec 10, 2010	14 Day					
-	Method: LTM-GEN-7080 Moisture								

ABN: 50 005 085 521 Telephone: +61 2 9900 8400

ABN-50 005 085 521 e.mail: EnviroSales@eurofins.com web: www.eurofins.com.au

2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +612 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Muranic QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Eurofins | mgt Analytical Services Manager: Mary Makarios

ENM Exemption Suite -The excavated natural material order 2014 NSW

Moisture Set

Metals M8

Eurofins | mgt Suite B14

Asbestos Absence /Presence

Sample Detail

×

×

×

× ×

Melbourne Laboratory - NATA Site # 1254 & 14271

Brisbane Laboratory - NATA Site # 20794 Sydney Laboratory - NATA Site # 18217

Perth Laboratory - NATA Site # 18217

External Laboratory Sample ID

å

×

×

S16-De17801 S16-De17802

Soil Soil Soil Soil Soil Soil Soil Soil

Dec 06, 2016 Dec 06, 2016

> BH3 BH4 BH5

BH2

BH1

LAB ID

Matrix

Sampling

Sample Date

×

×

×

S16-De17805

S16-De17806

S16-De17807 S16-De17808

S16-De17803 S16-De17804 8

Dec 16, 2016 3:00 PM Dec 23, 2016

Received: Priority: Due:

Amir Farazmand

Contact Name:

03 9562 8808

Fax:

6/31-37 Howleys Rd Notting Hill

VIC 3168

Geotesta P/L

Company Name: Address:

230 GRANGE AVE NE083

Project Name: Project ID:

528172

Order No.: Report #: Phone:

Perth 291 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1265 Site # 18217

Page 8 of 18 Report Number: 528172-S

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Test Counts

BH8

BH6

BH7

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences,
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per Kilogram

ug/l: micrograms per litre

ppb: Parts per billion

org/100ml: Organisms per 100 millilitres

MPN/100mL: Most Probable Number of organisms per 100 millilitres

mall: milliorams per litre

ppm: Parts per million

%: Percentage

NTU: Nephelometric Turbidity Units

Terms

Where a moisture has been determined on a solid sample the result is expressed on a dry basis. Drv

LOR

SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery CRM Certified Reference Material - reported as percent recovery

In the case of solid samples these are performed on laboratory certified clean sands, Method Blank

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis. **Batch SPIKE** Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure

coc Chain of Custody Sample Receipt Advice SRA

Client Parent - QC was performed on samples pertaining to this report CP

Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within NCP

Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Page 9 of 18

Report Number: 528172-S

mgt

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fr	actions			_	
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fr	actions				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene .	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	

Date Reported: Dec 29, 2016

mgt

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	<1	1	Pass	
Method Blank					
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
		< 0.2	0.2	Pass	
Dichlorvos Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
	mg/kg				
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank		THE PARTY OF	a decide to the said		
Total Recoverable Hydrocarbons - 2013 NEPM Fraction	s				
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
Conductivity (1:5 aqueous extract at 25°C)	uS/cm	< 5	5	Pass	
Method Blank	K STATE				
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fracti	ions				
TRH C6-C9	%	94	70-130	Pass	
TRH C10-C14	%	97	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	105	70-130	Pass	
Toluene	%	102	70-130	Pass	
Ethylbenzene	%	103	70-130	Pass	
m&p-Xylenes	%	98	70-130	Pass	
o-Xylene	%	100	70-130	Pass	
Xylenes - Total	%	99	70-130	Pass	
LCS - % Recovery				1 400	
Total Recoverable Hydrocarbons - 2013 NEPM Fracti	ons				
Naphthalene	%	125	70-130	Pass	
TRH C6-C10	%	85	70-130	Pass	
LCS - % Recovery	//	00	70-100	1 433	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	111	70-130	Pass	
Acenaphthylene	%	89	70-130	Pass	
Anthracene	%	105	70-130	Pass	
	%	96			
Benz(a)anthracene			70-130	Pass	
Benzo(a)pyrene	%	92	70-130	Pass	
Benzo(b&j)fluoranthene	%	100	70-130	Pass	
Benzo(g.h.i)perylene	% %	97	70-130	Pass	
Benzo(k)fluoranthene		106	70-130	Pass	
Chrysene	%	99	70-130	Pass	
Dibenz(a.h)anthracene	%	72	70-130	Pass	
Fluoranthene	%	109	70-130	Pass	
Fluorene	%	124	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	88	70-130	Pass	
Naphthalene	%	101	70-130	Pass	
Phenanthrene	%	106	70-130	Pass	
Pyrene	%	107	70-130	Pass	
LCS - % Recovery		7 22 2 2 2 2			
Organochlorine Pesticides					
Chlordanes - Total	%	93	70-130	Pass	
4.4'-DDD	%	90	70-130	Pass	
4.4'-DDE	%	91	70-130	Pass	
4.4'-DDT	%	73	70-130	Pass	
a-BHC	%	95	70-130	Pass	
Aldrin	%	106	70-130	Pass	
b-BHC	%	114	70-130	Pass	
d-BHC	%	114	70-130	Pass	
Dieldrin	%	88	70-130	Pass	
Endosulfan I	%	106	70-130	Pass	
Endosulfan II	%	86	70-130	Pass	
Endosulfan sulphate	%	90	70-130	Pass	

Test		0.0	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Endrin			%	81		70-130	Pass	
Endrin aldehyde			%	76		70-130	Pass	
Endrin ketone			%	83		70-130	Pass	
g-BHC (Lindane)			%	96		70-130	Pass	
Heptachlor			%	100	×	70-130	Pass	
Heptachlor epoxide			%	102		70-130	Pass	
Hexachlorobenzene			%	108		70-130	Pass	
Methoxychlor			%	74		70-130	Pass	
LCS - % Recovery								
Organophosphorus Pesticides								_
Diazinon			%	107		70-130	Pass	
Dimethoate			%	73		70-130	Pass	
Ethion			%	129		70-130	Pass	
Fenitrothion			%	78		70-130	Pass	
Methyl parathion			%	107		70-130	Pass	
Mevinphos			%	100		70-130	Pass	
LCS - % Recovery		TARRES	1 /0	100	NAME OF TAXABLE	703100	1 433	
Total Recoverable Hydrocarbons	- 2013 NEDAN Eros	tions	General Section				- 10 m	
TRH >C10-C16	- 2013 NEFIN FIAC	10115	%	87	 	70-130	Dasa	
THE PARTY NAMED IN COLUMN TWO IS NOT THE OWNER.	Delica Service Const		//0	8/		70-130	Pass	
LCS - % Recovery				ATTACH TO THE				
Heavy Metals						70.400	_	
Arsenic			%	95		70-130	Pass	
Cadmium			%	94		70-130	Pass	
Chromium			%	95		70-130	Pass	
Copper			%	96		70-130	Pass	
Lead			%	93		70-130	Pass	
Mercury			%	94		70-130	Pass	
Nickel			%	98		70-130	Pass	
Zinc			%	97		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Organophosphorus Pesticides				Result 1				
Diazinon	M16-De20297	NCP	%	108		70-130	Pass	
Dimethoate	M16-De20297	NCP	%	105		70-130	Pass	
Ethion	M16-De20297	NCP	%	106		70-130	Pass	
Fenitrothion	M16-De20297	NCP	%	73		70-130	Pass	
Methyl parathion	M16-De20297	NCP	%	74		70-130	Pass	
Mevinphos	M16-De20297	NCP	%	79		70-130	Pass	
Spike - % Recovery					在 其他 特别的 用			
Heavy Metals				Result 1				
Arsenic	S16-De13673	NCP	%	92		70-130	Pass	
Cadmium	S16-De13673	NCP	%	98		70-130	Pass	
Chromium	S16-De13673	NCP	%	83		70-130	Pass	
Copper	S16-De15239	NCP	%	95		70-130	Pass	
ООРРОІ	S16-De15239	NCP	%	91		70-130	Pass	-
Lead	010-0010200	NCP	%	99		70-130	Pass	
Lead			/0			70-100		
Mercury	S16-De13673			70	1	70-130	Page	
Mercury Nickel	S16-De13673 S16-De13673	NCP	%	79		70-130	Pass	
Mercury Nickel Zinc	S16-De13673			79 97		70-130 70-130	Pass Pass	
Mercury Nickel Zinc Spike - % Recovery	S16-De13673 S16-De13673 S16-De15239	NCP NCP	%	97				
Mercury Nickel Zinc Spike - % Recovery Total Recoverable Hydrocarbons	S16-De13673 S16-De13673 S16-De15239	NCP NCP ions	% %	97 Result 1		70-130	Pass	
Mercury Nickel Zinc Spike - % Recovery Total Recoverable Hydrocarbons TRH C10-C14	S16-De13673 S16-De13673 S16-De15239	NCP NCP	%	97				
Mercury Nickel Zinc Spike - % Recovery Total Recoverable Hydrocarbons TRH C10-C14 Spike - % Recovery	S16-De13673 S16-De13673 S16-De15239 - 1999 NEPM Fract S16-De19233	NCP NCP ions	% %	97 Result 1 94		70-130	Pass	
Mercury Nickel Zinc Spike - % Recovery Total Recoverable Hydrocarbons TRH C10-C14	S16-De13673 S16-De13673 S16-De15239 - 1999 NEPM Fract S16-De19233	NCP NCP ions	% %	97 Result 1		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Acenaphthylene	S16-De16172	NCP	%	90		70-130	Pass	Oodo
Anthracene	S16-De16172	NCP	%	122		70-130	Pass	
Benz(a)anthracene	S16-De16172	NCP	%	105		70-130	Pass	
Benzo(a)pyrene	S16-De16172	NCP	%	97		70-130	Pass	
Benzo(b&j)fluoranthene	S16-De16172	NCP	%	113		70-130	Pass	
Benzo(g.h.i)perylene	S16-De16172	NCP	%	96		70-130	Pass	
Benzo(k)fluoranthene	S16-De16172	NCP	%	100		70-130	Pass	
Chrysene	S16-De16172	NCP	%	106		70-130	Pass	
Dibenz(a.h)anthracene	S16-De16172	NCP	%	93		70-130	Pass	
Fluoranthene	S16-De16172	NCP	%	115		70-130	Pass	
Fluorene	S16-De16172	NCP	%	121		70-130	Pass	
Indeno(1.2.3-cd)pyrene	S16-De16172	NCP	%	98		70-130	Pass	
Naphthalene	S16-De16172	NCP	%	106		70-130	Pass	
Phenanthrene	S16-De16172	NCP	%	128		70-130	Pass	
Pyrene	S16-De16172	NCP	%	121		70-130	Pass	
Spike - % Recovery				THE REAL PROPERTY.				
Organochlorine Pesticides				Result 1				
Chlordanes - Total	S16-De18276	NCP	%	108		70-130	Pass	
4.4'-DDD	S16-De18276	NCP	%	114		70-130	Pass	
4.4'-DDE	S16-De18276	NCP	%	120		70-130	Pass	
4,4'-DDT	S16-De18276	NCP	%	121		70-130	Pass	
a-BHC	S16-De18276	NCP	%	95		70-130	Pass	
Aldrin	S16-De18276	NCP	%	105		70-130	Pass	
b-BHC	S16-De18276	NCP	%	121		70-130	Pass	
d-BHC	S16-De18276	NCP	%	130		70-130	Pass	
Dieldrin	S16-De18276	NCP	%	102		70-130	Pass	
Endosulfan I	S16-De18276	NCP	%	114		70-130	Pass	
Endosulfan II	S16-De18276	NCP	%	102		70-130	Pass	
Endosulfan sulphate	S16-De18276	NCP	%	120		70-130	Pass	
Endrin	S16-De18276	NCP	%	97		70-130	Pass	
Endrin aldehyde	S16-De18276	NCP	%	100		70-130	Pass	
Endrin ketone	S16-De18276	NCP	%	116		70-130	Pass	
g-BHC (Lindane)	S16-De18276	NCP	%	98		70-130	Pass	n
Heptachlor	S16-De18276	NCP	%	111		70-130	Pass	
Heptachlor epoxide	S16-De18276	NCP	%	120		70-130	Pass	
Methoxychlor	S16-De18276	NCP	%	85		70-130	Pass	
Spike - % Recovery			No. of Line					
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1				
TRH >C10-C16	S16-De19233	NCP	%	85		70-130	Pass	
Spike - % Recovery					PARTY AND SERVICE			
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1				
TRH C6-C9	S16-De17804	CP	%	90		70-130	Pass	
Spike - % Recovery	TAX DE ST	P. SOLE			THE STREET			
BTEX				Result 1			_	
Benzene	S16-De17804	CP	%	102		70-130	Pass	
Toluene	S16-De17804	CP	%	100		70-130	Pass	
Ethylbenzene	S16-De17804	CP	%	100		70-130	Pass	
m&p-Xylenes	S16-De17804	СР	%	95		70-130	Pass	
o-Xylene	S16-De17804	СР	%	96		70-130	Pass	
Xylenes - Total	S16-De17804	CP	%	96		70-130	Pass	
Spike - % Recovery					AND DESCRIPTION		LANE TO	
Total Recoverable Hydrocarbons	s - 2013 NEPM Fract	ions		Result 1				
Naphthalene	S16-De17804	CP	%	114		70-130	Pass	
TRH C6-C10	S16-De17804	CP	%	83		70-130	Pass	

mgt

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				100					
Organophosphorus Pesticide				Result 1	Result 2	RPD			
Azinphos-methyl	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	4
Chlorpyrifos	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	M16-De16460	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	M16-De16460	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	M16-De16460	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	M16-De16460	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate								STA	
				Result 1	Result 2	RPD			
% Moisture	S16-De17801	CP	%	2.0	2.4	19	30%	Pass	
Duplicate		THE RE							
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S16-De18279	NCP	mg/kg	17	17	<1	30%	Pass	
Cadmium	S16-De18279	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S16-De18279	NCP	mg/kg	41	41	1.0	30%	Pass	
Copper	S16-De18279	NCP	mg/kg	21	22	2.0	30%	Pass	
Lead	S16-De18279	NCP	mg/kg	33	29	12	30%	Pass	
Mercury	S16-De18279	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S16-De18279	NCP	mg/kg	13	12	4.0	30%	Pass	
Zinc	S16-De18279	NCP	mg/kg	66	63	4.0	30%	Pass	
Zinc Duplicate	1 010-0610219	NOF	тулу	00	00	7.0	3070	1 833	
Duplicate Total Recoverable Hydrocarb	one - 1999 NEDM Eracti	ione		Result 1	Result 2	RPD			
	S16-De17834	NCP	malka	< 20	< 20	<1	30%	Pass	
TRH C6-C9		CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S16-De17802		mg/kg			<1	30%		
TRH C15-C28	S16-De17802	CP	mg/kg	< 50	< 50	<u> </u>	30%	Pass	

Duplicate	TENEDON STATE		e za kin				raktes ye		
BTEX				Result 1	Result 2	RPD			
Benzene	S16-De17834	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S16-De17834	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S16-De17834	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S16-De17834	NCP	mg/kg	< 0.1	< 0.2	<1	30%	Pass	
o-Xylene	S16-De17834	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S16-De17834	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate	010-0617004	INOI	i mg/kg	1 0.0	~ 0.0	F S 1 5 7	J 3070	T ass	
Total Recoverable Hydrocarbor	s - 2013 NEPM Frac	lions		Result 1	Result 2	RPD			
Naphthalene	S16-De17834	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S16-De17834	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate	010 DC17004	1101	i ilig/kg	1 20	120		1 3070	1 433	
Polycyclic Aromatic Hydrocarb	ons			Result 1	Result 2	RPD		T	
Acenaphthene	S16-De16171	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S16-De16171	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S16-De16171	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S16-De16171	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S16-De16171	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S16-De16171	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S16-De16171	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S16-De16171	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S16-De16171	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a,h)anthracene	S16-De16171	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S16-De16171	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S16-De16171	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S16-De16171	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S16-De16171	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S16-De16171	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S16-De16171	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	SIN SALISMEN E	23434			A CLARKE				
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S16-De17802	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S16-De17802	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S16-De17802	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S16-De17802	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S16-De17802	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S16-De17802	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S16-De17802	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S16-De17802	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S16-De17802	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S16-De17802	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S16-De17802	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S16-De17802	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S16-De17802	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S16-De17802	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S16-De17802	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S16-De17802	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S16-De17802	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S16-De17802	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S16-De17802	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S16-De17802	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S16-De17802	CP	mg/kg	< 1	< 1	<1	30%	Pass	

Duplicate					-	-		-	
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD		24 E E	
TRH >C10-C16	S16-De17802	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S16-De17802	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S16-De17802	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C)	S16-De17802	СР	uS/cm	160	160	2.0	30%	Pass	
pH (1:5 Aqueous extract)	S16-De17802	CP	pH Units	9.1	9.0	pass	30%	Pass	

Comments

Sam	ple	Integ	rity
-----	-----	-------	------

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	No
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

N02

Mary Makarios	Analytical Services Manager
Alex Petridis	Senior Analyst-Organic (VIC)
Joseph Edouard	Senior Analyst-Organic (VIC)
Nibha Vaidya	Senior Analyst-Asbestos (NSW)
Ryan Hamilton	Senior Analyst-Inorganic (NSW)
Ryan Hamilton	Senior Analyst-Metal (NSW)
Ryan Hamilton	Senior Analyst-Organic (NSW)
Ryan Hamilton	Senior Analyst-Volatile (NSW)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | ringlishull not be lable for loss, cost, damages or expenses incurred by the cliest, or any other person or company, recurring from the use of any information or interpretation given in this report. In no case shall Eurofins | might be lable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the lests were performed on the samples as received.

Appendix C Previous Reports

Universal Property Group Pty Ltd

Preliminary Site Investigation:
Lots 59 and 173 Richmond Road, 1032,
1036, 1060, 1070, 1080, 1082, 1086, 1132,
1140, 1148 and 1160 Richmond Road, and
230, 232 and 234 Grange Avenue, Marsden
Park, NSW

P1504888JR01V01 December 2015

Copyright Statement

Martens & Associates Pty Ltd (Publisher) is the owner of the copyright subsisting in this publication. Other than as permitted by the Copyright Act and as outlined in the Terms of Engagement, no part of this report may be reprinted or reproduced or used in any form, copied or transmitted, by any electronic, mechanical, or by other means, now known or hereafter invented (including microcopying, photocopying, recording, recording tape or through electronic information storage and retrieval systems or otherwise), without the prior written permission of Martens & Associates Pty Ltd. Legal action will be taken against any breach of its copyright. This report is available only as book form unless specifically distributed by Martens & Associates in electronic form. No part of it is authorised to be copied, sold, distributed or offered in any other form.

The document may only be used for the purposes for which it was commissioned. Unauthorised use of this document in any form whatsoever is prohibited. Martens & Associates Pty Ltd assumes no responsibility where the document is used for purposes other than those for which it was commissioned.

Limitations Statement

The sole purpose of this report and the associated services performed by Martens & Associates Pty Ltd is to provide a Preliminary Site Investigation at the subject site in accordance with the scope of services set out in the contract / quotation between Martens & Associates Pty Ltd and Universal Property Group Pty Ltd (hereafter known as the Client). That scope of works and services were defined by the requests of the Client, by the time and budgetary constraints imposed by the Client, and by the availability of access to the site.

Martens & Associates Pty Ltd derived the data in this report primarily from a number of sources which included correspondence regarding the proposal, examination of records in the public domain, interviews with individuals with information about the site or the project, and field explorations conducted on the dates indicated. The passage of time, manifestation of latent conditions or impacts of future events may require further examination / exploration of the site and subsequent data analyses, together with a re-evaluation of the findings, observations and conclusions expressed in this report.

In preparing this report, Martens & Associates Pty Ltd may have relied upon and presumed accurate certain information (or absence thereof) relative to the site. Except as otherwise stated in the report, Martens & Associates Pty Ltd has not attempted to verify the accuracy of completeness of any such information (including for example survey data supplied by others).

The findings, observations and conclusions expressed by Martens & Associates Pty Ltd in this report are not, and should not be considered an opinion concerning the completeness and accuracy of information supplied by others. No warranty or guarantee, whether express or implied, is made with respect to the data reported or to the findings, observations and conclusions expressed in this report. Further, such data, findings and conclusions are based solely upon site conditions, information and drawings supplied by the Client etc. in existence at the time of the investigation.

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between Martens & Associates Pty Ltd and the Client. Martens & Associates Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

© December 2015 Copyright Martens & Associates Pty Ltd All Rights Reserved

Head Office

Suite 201, 20 George Street Hornsby, NSW 2077, Australia ACN 070 240 890 ABN 85 070 240 890 **Phone: +61-2-9476-9999**

Fax: +61-2-9476-8767 Email: mail@martens.com.au Web: www.martens.com.au

J.			Do	cument and I	Distribution Sta	itus	
Author(s)		Reviewer(s)		Project Manager		Signature	
Card	Carolyn Stanley		Mr Gray Taylor Mr Andrew Norris		Mr Gray Taylor		Carry ogh
					Documen	t Location	
Revision No.	Status	Release Date	File Copy	Universal Property Group Pty Ltd		•	
1	Draft	3.12.2015	1E, 1P, 1H	1P			
1	Final	23.12.2015	1E, 1P, 1H	1P			

Distribution Types: F = Fax, H = hard copy, P = PDF document, E = Other electronic format. Digits indicate number of document copies.

All enquiries regarding this project are to be directed to the Project Manager.

Preliminary Site Investigation:

Lots 59 and 173 Richmond Road, 1032, 1036, 1060, 1070, 1080, 1082, 1086, 1132, 1140, 1148 and 1160 Richmond Road, and 230, 232 and 234 Grange Avenue, Marsden Park, NSW.

Contents

1	OVERVIEW	5
1.1	Introduction	5
1.2	Objectives	5
1.3	Project Scope	5
1.4	Abbreviations	6
2	SITE DESCRIPTION	8
2.1	Site Location and Existing Land Use	8
2.2	Hydrogeology	0
3	SITE BACKGROUND ASSESSMENT1	2
3.1	Historical Site Records Review	2
3.2	NSW OEH Records	5
3.3	Historical Aerial Photograph Analysis	5
3.4	Walkover Site Inspection	8
(AREAS OF ENVIRONMENTAL CONCERN/CONTAMINANTS OF PRIMAR' CONCERN2	4
(4
5 (CONCERN2	4 6
5 5.1 5.2	CONCERN	4 6 6 7
5 5.1 5.2	CONCERN	4 6 6 7
5.1 5.2 6	CONCERN	4 6 6 7 8
5.1 5.2 6 1	CONCERN	4 6 7 8
5 5 5.1 5.2 6 1 7 1 8 4	CONCERN	4 6 7 8 9
5 5 5.1 5.2 6 1 7 1 8 4 9 4	CONCERN 2 CONCLUSIONS AND RECOMMENDATIONS 2 Conclusions 2 Recommendations 2 LIMITATIONS STATEMENT 2 REFERENCES 2 ATTACHMENT A – SITE PLAN 3	4 6 7 8 9 0
5 (5.1) 5.2 6 (7) 7 (8) 9 (10)	CONCERN 2 CONCLUSIONS AND RECOMMENDATIONS 2 Conclusions 2 Recommendations 2 LIMITATIONS STATEMENT 2 REFERENCES 2 ATTACHMENT A – SITE PLAN 3 ATTACHMENT B - GROUNDWATER BORE LOCATIONS 3	4 6 7 8 9 0 2

1 Overview

1.1 Introduction

Martens & Associates Pty Ltd has prepared this Preliminary Site Investigation (PSI) for Universal Property Group Pty Ltd ('the Client') to support a site redevelopment proposal comprising 16 properties in Marsden Park, NSW, being:

- o Lots 59 and 173 Richmond Road;
- o 1032, 1036, 1060, 1070, 1080, 1082, 1086, 1132, 1140, 1148 and 1160 Richmond Road; and
- o 230, 232 and 234 Grange Avenue.

Note that site investigations for 1148 Richmond Road (Lot 7 DP 235714) include only the access handle from Richmond Road to the "majority" of the allotment.

1.2 Objectives

Investigation objectives include:

- Identification of historic and current potentially contaminating site activities.
- Evaluation of potential areas of environmental concern (AEC) and associated contaminants of primary concern (COPC).
- Provide comment on suitability of site for future development use and provide recommendations for a detailed site investigation (DSI) including possible intrusive soil investigations, if required.

1.3 Project Scope

Scope of works includes:

- Walkover inspection to review current land use, potential contaminating activities and neighbouring land uses.
- Review available Blacktown City Council (BCC) site development consents.

- Review of 8 historic aerial photographs to assess past site and surrounding land use patterns.
- Review NSW OEH (formerly NSW EPA) notices under the Contaminated Land Management Act (1997).
- Prepare a PSI report in general accordance with the relevant sections of ASC NEPM (1999, amended 2013), NSW OEH (2011) and DEC (2006).

1.4 Abbreviations

ACM - Asbestos containing material

AEC - Area of environmental concern

ASC NEPM – Assessment of Site Contamination - National Environmental Protection Measure (1999 amended 2013).

AST - Above ground storage tank

BCC - Blacktown City Council

BTEX - Benzene, toluene, ethyl benzene, xylene

COPC - Contaminants of primary concern

DEC - NSW Department of Environment and Conservation

DP - Deposited plan

DSI - Detailed site investigation

EPA - NSW Environmental Protection Authority

HM - Heavy metals

IBC - Intermediate bulk carriers

LGA – Local government area

MA – Martens & Associates Pty Ltd

mAHD – Metres, Australian Height Datum

mbgl - Metres below ground level

OCP - Organochloride pesticides

OEH – NSW Office of Environment and Heritage

OPP – Organophosphate pesticides

PACM – Potential asbestos containing material

PAH - Polycyclic aromatic hydrocarbons

PSI – Preliminary site investigation

SAC - Site acceptance criteria

SAP – Sampling and analysis plan

TRH - Total recoverable hydrocarbons

Site Description 2

2.1 Site Location and Existing Land Use

Site information is summarised in Tables 1 and 2. Site location and general surrounds are provided in Sheet A000 (Attachment A).

Table 1: Investigation address, lot information, area and zoning.

Lot	DP	Street Address	Area (ha)	Zoning
59	1196729	Lot 59 Richmond Road	0.9	SEPP (SRGC) 2006:R3; SEPP (SRGC) 2006:SP2 – Infrastructure – Local Drainage
173	1191299	Lot 173 Richmond Road	1.6	SEPP (SRGC) 2006:R2; SEPP (SRGC) 2006:SP2 – Infrastructure – Classified Road; SEPP (SRGC) 2006:SP2 – Infrastructure – Local Drainage
1-3	1200165	1032 Richmond Road	0.9	SEPP (SRGC) 2006;R3
7	741072	1036 Richmond Road	0.7	SEPP (SRGC) 2006:R3; SEPP (SRGC) 2006:SP2 – Infrastructure – Local Drainage
Lot 12, Sec M	193074	1060 Richmond Road	2.2	SEPP (SRGC) 2006:R3; SEPP (SRGC) 2006:SP2 – Infrastructure – Local Road
54	1196583	1070 Richmond Road	1.3	SEPP (SRGC) 2006:R3; SEPP (SRGC) 2006:SP2 – Infrastructure – Local Road
53	1196583	1080 Richmond Road	1.0	SEPP (SRGC) 2006:R3; SEPP (SRGC) 2006:SP2 – Infrastructure – Local Road
52	1196583	1082 Richmond Road	0.7	SEPP (SRGC) 2006:R3; SEPP (SRGC) 2006:SP2 – Infrastructure – Local Road
51	1196583	1086 Richmond Road	10.3	SEPP (SRGC) 2006:R3; SEPP (SRGC) 2006:RE1; SEPP (SRGC) 2006:SP2 – Infrastructure – Local Road
50	1196583	1132 Richmond Road	10.0	SEPP (SRGC) 2006:R2; SEPP (SRGC) 2006:RE3; SEPP (SRGC) 2006:SP2 – Infrastructure – Local Drainage; SEPP (SRGC) 2006:SP2 – Infrastructure – Local Road
8	235714	1140 Richmond Road	10.1	SEPP (SRGC) 2006:R2; SEPP (SRGC) 2006:R3; SEPP (SRGC) 2006:RE1; SEPP (SRGC) 2006:SP2 – Infrastructure – Classified Road; SEPP (SRGC) 2006:SP2 – Infrastructure – Local Drainage
7	235714	1148 Richmond Road ¹	1.6	SEPP (SRGC) 2006:R2; SEPP (SRGC) 2006:SP2 - Infrastructure - Classified Road; SEPP (SRGC) 2006:SP2 - Infrastructure - Local Drainage; SEPP (SRGC) 2006:SP2 - Infrastructure - Local Road
5	235714	1160 Richmond Road	10.1	SEPP (SRGC) 2006:R2; SEPP (SRGC) 2006:SP2 – Infrastructure – Classified Road; SEPP (SRGC) 2006:SP2 – Infrastructure – Local Drainage

Lot	DP	Street Address	Area (ha)	Zoning
20	1191512	230 Grange Avenue	1.1	SEPP (SRGC) 2006:R3
10	70287	232 Grange Avenue	1.1	SEPP (SRGC) 2006:R3; SEPP (SRGC) 2006:SP2 – Infrastructure – Local Drainage
Lot 11, Sec M	193074	234 Grange Avenue	2.2	SEPP (SRGC) 2006:R3; SEPP (SRGC) 2006:SP2 – Infrastructure – Local Drainage; SEPP (SRGC) 2006:SP2 – Infrastructure – Local Road

Notes

Table 2: Site background information.

able 2: Site background informat	Laboratoria del Companyo del Co
Investigation area	Approximately 55.7 ha
Local Government Area (LGA)	Blacktown City Council
Site description	Majority of lots are rural residential properties with existing dwellings and/o sheds. Market gardens are located on 1086 and 1160 Richmond Road, and a landscape and nursery business is located at 230 Grange Avenue. 1080 and 1082 Richmond Road are cleared and undeveloped properties, and Lo 173 and the eastern portion of 1148 Richmond Road are access roads only with no lot infrastructure. Poultry/chicken sheds are located at 1132 Richmond Road. Dams are located on 1160, 1140, 1132, 1086, 1036, 1032 and Lot 59 Richmond Road.
	The site is bordered by rural residential and residential allotments to the north west, Richmond Road to the east, Grange Road to the south east, forme Blacktown Cily Council Waste Services Depot to the south west and west and rural allotments, with clearing for residential subdivision to the west and north west.
	Marsden Park Primary School is located 180 m east of 1086 Richmond Road and a Caltex petrol station is located adjacent to the school's southerr boundary, approximately 150 m from 1086 Richmond Road. Peek Farm (poultry farm), was formerly located on the western portion of 1148 Richmond Road (not included as part of our site investigations). Allotments to north and west of 1160 Richmond Road are cleared for residential subdivision development.
	The sile has low to moderate grades of 0 – 15%, with the northern portion of the sile ranging from 24 mAHD in the north eastern corner, to 37 mAHD near the southern boundary of 1086 Richmond Road. The southern portion of the site ranges from 33 mAHD in the south west corner to 37 mAHD near the southern boundary of 1086 Richmond Road, and the south eastern corner of the site.
Current land use	Rural, rural residential, commercial and residential under construction.
Proposed land use	Residential.
Surrounding land uses	Mixture of rural residential, residential, commercial and school.

^{&#}x27; Assessment of 1148 Richmond Road (Lot 7 DP 235714) limited to the access handle only, as shown on plan.

Geology and soil landscapes

Environmental receptors

Human receptors

The Penrith 1:100,000 Geological Series Sheet 9030 (1991) indicates that the site is underlain by Bringelly Shale which comprises shale, carbonaceous claystone, claystone, laminite, fine to medium grained lithic sandstone and rare coal/tuff.

The NSW Environment and Heritage eSPADE website identifies the site as having soils of the Blacktown soil landscapes consisting of shallow to moderately deep hardsetting mottled texture contrast soils, red and brown podzolic soils on crests grading to yellow podzic soils on lower slopes and in drainage lines.

Mapped watercourses and dams located in the central and eastern areas of the northern portion of the site (1086, 1132, 1140, 1148, Lot 173 and 1160 Richmond Road) drain north / north east toward an unnamed tributary of South Creek (more than 4.5 km north).

Another mapped watercourse located in the north eastern portion of 1036 Richmond Road and the south eastern portion of Lot 59 drain to another unnamed tributary of South Creek. South Creek eventually drains into the Hawkesbury River, more than 10 km north.

Existing surrounding rural residential and residential developments. Marsden Park Public School 180 m east of northern portion of site.

Existing and future residents and site workers / builders.

2.2 Hydrogeology

Review of NSW Department of Primary Industries - Office of Water database indicated eleven groundwater bores (with limited available information) within 500 m of the site (Table 3). Groundwater bore locations are shown on Sheet A001 (Attachment B).

Table 3: Available hydrogeological information.

Groundwater Bore Identification	Direction and Distance	Depth To Groundwater (mbgl)	Intended Use	Water Bearing Zone Substrate
GW104308	West (500m)	ND 1	Monitoring Bore	ND '
GW104309	South (10m)	ND 1	Monitoring Bore	ND '
GW104310	South west (125m)	ND 1	Monitoring Bore	ND '
GW104311	South west (290m)	ND '	Monitoring Bore	ND
GW104312	South west (50m)	ND 1	Monitoring Bore	ND '
GW104313	South (50m)	ND '	Monitoring Bore	ND 1
GW104314	South (165m)	ND 1	Monitoring Bore	ND '
GW113305	East (160m)	ND!	Monitoring Bore	ND '

Groundwater Bore Identification	Direction and Distance	Depth To Groundwater (mbgl)	Intended Use	Water Bearing Zone Substrate
GW113306	East (160m)	ND 1	Monitoring Bore	ND '
GW113307	East (165m)	ND '	Monitoring Bore	ND '
GW113308	East (250m)	ND '	Monitoring Bore	ND 1

Notes

From review of the information in Table 3, groundwater wells in the vicinity are used for monitoring, however no information regarding groundwater levels was available. Further investigation would be required to characterise site hydrogeology.

On site geotechnical investigations to 4.5 mbgl did not encounter groundwater (MA, 2015).

¹ ND – No data available.

3 Site Background Assessment

3.1 Historical Site Records Review

Development application and building plan records kept by BCC were reviewed (Table 4), and summary information provided in Attachment The records indicate that various development and building applications were made for construction, alterations and resiting of dwellings and sheds on various properties. A commercial dog kennel was approved in 1965 for 1032 Richmond Road, and poultry sheds were approved for 1132 Richmond Road. A place of public worship was approved in 2009 for 1036 Richmond Road, and a community centre for the Palestinian Club was approved in 1993 for 234 Grange Avenue. In 1988, a landscape supply business was approved for 230 Grange Avenue. Consent to level fill (dumped without permission) was given in 2001 to 1082 Richmond Road, and ministerial consent was given (likely around 2013) for the same property for expansion and upgrades to Richmond Road. No records of approvals were found for Lot 59, and 1080 Richmond Road.

Remediation of 1148 Richmond Road was approved in 2013 to implement a RAP (formerly a poultry farm), and a staged residential subdivision was approved in 2014 for 1148 and Lot 173 Richmond Road, with associated earthworks, road construction, dewatering of dams and other civil works. However, it is likely that identified remediation and residential subdivision construction works relate to the western portion of 1148 Richmond Road (Lot 7 DP 235714) which is not included as part of this assessment, and construction works identified on Lot 173 are likely to the benefit of surrounding properties, and not directly applicable to the site allotment under this assessment.

Table 4: BCC historical site information.

Lot ID/Address	Year	Record No.	Description
Lot 59 Richmond Road			No approvals found
	1973	BA-73-950	Dwelling
	2013	DA-13-1503	Temporary stockpiling
Lot 173 Richmond Road	2014	DA-13-2350	Installation of 3 temporary signage structures
	2014	DA-13-2351	Staged subdivision: Subdivision into 242 residential lots, 8 super lots and 5 residue lots
			with associated roads, drainage basins

Lot ID/Address	Year	Record No.	Description
	2014	DA-13-1945	Stages 12 and 12A – Bulk earthworks and Torrens title subdivision to create 69 residential lots, 2 residue lots, 2 super lots and public roads
Lot 173 Richmond Road 1	2015	DA-14-2311	Earthworks – Stages 12 and 12A – Bulk earthworks and Torrens title subdivision to create 69 residential lots, 2 residue lots, 2 super lots and public roads
	1965	DA-65-392	Commercial dog kennels
1032 Richmond Road	1984	DA-83-4999	Use of dwelling as an office
	2000	DA-00-5303	Awning
	1988	DA-88-825	Resiled dwelling
	1989	BA-89-1043	Resited dwelling
1036 Richmond Road	2001	DA-00-5118	Use existing house and shed for church meeting for 20 families
	2009	DA-05-3227	New place of public worship building including 1-bedroom caretakers residence and car park
1060 Richmond Road	1983	DA-83-4741	Dwelling
	1989	DA-89-419	2-storey dwelling
	1989	BA-89-227	Dwelling
1070 Richmond Road	1990	DA-89-677	Machinery shed
	1990	BA-89-4125	Shed
	1991	BA-91-3438	In-ground pool
1080 Richmond Road			No approvals found
	2000	DA-99-6619	Detached rural 2-storey dwelling and pergola
1082 Richmond Road	2001	\$96-01-537 (Modification to DA-99-6619)	To level off fill (was dumped without permission) as per plans – to right hand side
	unknown	MC-13-410	Richmond Road expansion/upgrade – north of Grange Avenue to South Creek flood plain
1086 Richmond Road	1985	DA-85-5747	Dwelling and conversion of existing dwelling to rural workers dwelling

Lot ID/Address	Year	Record No.	Description
	1984	DA-84-5455	Poultry shed
	1986	DA-86-6395	Relocation of a poultry shed and machinery shed to subject land
	1986	DA-86-2483	Resite chicken sheds
1132 Richmond Road	1992	DA-92-401	Extend egg packing room, covered egg loading dock and poultry shed
	1993	BA-93-508	Poultry shed
	1996	DA-96-375	Existing house and kitchen farm on site
	1996	BA-96-2954	2-storey dwelling
	1997	BA-97-2142	Screen enclosure
1140 Richmond Road	1997	IA-97-1319	Treatment shed
Name of the Control of the Control	1969	BA-69-2554	Dwelling and poultry shed
	2013	DA-13-1573	Demolition of structures ancillary to a poultry farm
	2013	DA-13-1635	Earthworks – Remediation of land to implement the subject RAP
	2015	DA-14-2280	Road – Torrens title subdivision in 3 stages to create 76 residential lots, construction of new roads, dewatering of dams, earthworks and associated subdivision/civil works
1148 Richmond Road ²	2015	DA-14-2311	Earthworks – Stages 12 and 12A – Bulk earthworks and Torrens title subdivision to create 69 lots, 2 residue lots, 2 super lots and public roads
	2015	DA-14-221	Real estate advertising sign
	2015	DA-15-815	Exhibition home – erection of dwelling with fit out for use as a sales and marketing office (on proposed lot 123 under DA-14-2280), to operate for a period of up to 5 years and temporary car park (on proposed Lot 122); access via driveway located in Frontier Avenue
11/0 8/-1	1981	DA-81-3452	Farm machinery shed (6.5 m x 12 m)
1160 Richmond Road	1980	BA-80-954	Dwelling
230 Grange Avenue	1981	DA-80-4431	Dwelling

Lof ID/Address	Year	Record No.	Description
220 Grange Avenue	1988	DA-88-88	Landscape supply business and rural dwelling
230 Grange Avenue	1988	BA-88-2809	Dwelling – alterations / additions
	1978	BA-78-4970	Alterations and additions
232 Grange Avenue	1979	BA-79-355	Bedrooms and bathroom
	1989	BA-89-920	Shed
234 Grange Avenue	1993	DA-92-389	Community Centre - Palestinian Club

Notes:

3.2 NSW OEH Records

No notices for the site or nearby surrounding areas under the Contaminated Land Management Act (1997) or the Environmentally Hazardous Chemicals Act (1985). No site within the suburb of Marsden Park was listed on the register, or identified on the list of NSW contaminated sites notified to the EPA.

3.3 Historical Aerial Photograph Analysis

Historical aerial photographs taken of the site during 1947, 1955, 1965, 1977, 1986, 1998, 2007 and 2015 were reviewed to investigate historic site land uses (Table 5). Copies of aerial photographs are provided in Attachment D.

Photos indicate that portions of the site have been used for rural and rural residential purposes since at least 1947.

¹ BCC historical DA/BA/CC information includes Lot 173 Richmond Road as part of consents for residential subdivision works to west and north west of the site, where Lot 173 is only an access driveway for the development and included no physical works.

² BCC historical DA/BA/CC information for 1148 Richmond Road (Lot 7 DP 235714), include works outside the current site investigations, which only addressed the access driveway to the north east.

Table 5: Historic aerial photograph observations 1947 - current.

Year		Description	Surrounding Land Use
1947	of 1086 Richmon 1082 Richmond F of 1060 Richmon 234 Grange Aven Avenue. Evidence western portion of portion of 1070 R portions of 234 G of 232 Grange Avenue. Denser tree cover	r sheds visible: in the south eastern comed Road; near the southern boundary of Road; near the north eastern boundary of Road; near the western boundary of the southern and in north and west of 232 Grange of past orchards are visible on the lost of 1080 Richmond Road, the eastern in ichmond Road, the northern and easter the range Avenue, and the southern portion venue. Remainder of site is cleared and remaining on majority of 230 Grange 59 Richmond Road.	Undeveloped bushland to west. Market s gardens, orchards, and dams in rural lands. Local road infrastructure visible. ge
1955	Richmond Road Richmond Road, on 1082 Richmon Dwelling and/or of 1060 Richmond portion of 1060 Ri of 232 Grange Av of 1036 Richmond	and small paddocks constructed on 10 and the south western portion of Lot 59 and sheds removed, others constructed d Road and 232 Grange Avenue, sheds constructed near eastern bounded Road. Market gardens on the norther chmond Road, and the southern portio venue. Dam visible near the central ared Road. Some clearing in eastern and of 230 Grange Avenue.	Some market gardens to east no longer visible, others established. More intensive use of land immediately south of Grange Avenue. n n
1965	and the south ea Sheds constructe Richmond Road of 232 Grange Av constructed near Richmond Road Avenue. Market Richmond Road. eastern portion o on 232 Grange Av	oved near the northern boundary of 108 stern boundary of Lot 59 Richmond Road near the northern boundary of 1070 and in the northern and central portions renue. Dwelling and/or sheds the northern boundary of 1032 and in the eastern portion of 230 Grang gardens cover 1082, 1080 and 1070 Possible market gardens in the south f 1086 Richmond Road. Market garden venue no longer visible. Dam uth western corner of 234 Grange	id. Additional market gardens to the east. Trotting track visible to south east. Dams constructed to east. Continued intensive use of properties to south of Grange Avenue.
1977 (BCC Online Maps) ¹	boundaries of 114 removed in the so Road. Dam cons and 1086 Richmo Richmond Road of	sheds constructed near eastern 0 and 1132 Richmond Road. Some shed outh eastern corner of 1086 Richmond tructed in the western portions of 1140 nd Road. Access driveway on 1148 constructed. Market gardens no longer Trotting track on 1086 Richmond Road	constructed to north, west and east. Some sheds to south removed. Bushland cleared, and Blacktown City Council Waste Services Depot visible to south.

Year	Description	Surrounding Land Use
1986	Dwelling and sheds constructed near southern boundary, dam constructed near north eastern boundary, and market gardens visible on majority of 1160 Richmond Road. Market gardens visible in the eastern portion of 1140 Richmond Road and dam constructed in the middle of the site. Sheds constructed near the southern boundary, and dam constructed near the north eastern boundary, and dam constructed near the north eastern boundary of 1132 Richmond Road. Dam additions in the southern portion of 1086 Richmond Road, and majority of lot used for market gardens. Dwellings and/or sheds removed from 1070 Richmond Road. Dwelling constructed in north eastern corner of 1060 Richmond Road. Some sheds removed in central area and near western boundary of 232 Grange Avenue, and new shed constructed. Dwelling constructed near south western boundary and market gardens visible in the northern portion of 234 Grange Avenue.	Continued rural land use to north, east and west, and further development of Blacktown City Council Waste Services Depot to west, including construction of dams. Removal of sheds to south and replaced with market gardens. Additional market gardens to east, south east and south.
1998	Some sheds near southern boundary removed, greenhouses and additional sheds constructed on 1160 Richmond Road. Access drive visible on Lot 173 Richmond Road. Alterations to existing sheds, and construction of an additional shed in south eastern corner of 1140 Richmond Road. Construction of several sheds, some likely used as poultry sheds, near southern boundary, and construction of dwelling in south eastern corner of 1132 Richmond Road. Dam constructed in north eastern portion of 1086 Richmond Road. Shed removed near northern boundary on 1082 Richmond Road. Market gardens visible on 1082, 1080, and the south western portion of 1070 Richmond Road. Dwelling and/or sheds constructed near the northern boundary and in the western portion of 1070 Richmond Road, and in the eastern portion of 1032 Richmond Road. Previous dwelling/shed on 230 Grange Avenue removed, lot cleared and dwelling and/or sheds constructed in the central area of the lot.	Surrounding rural land use, with some dwellings/sheds removed, others constructed. Poultry shed constructed to east. Additional market gardens visible to north east. Additional trotting tracks to north and south east.
2007 I (Google Earlh Maps)	Majority of sheds near southern boundary removed, area redeveloped as market gardens at 1132 Richmond Road. Market gardens no longer clearly visible on 1140, 1082, and 1080 Richmond Road. Some sheds constructed, others removed on 230 Grange Avenue.	Continued rural land use, with some dwellings/sheds removed, others constructed. Market gardens to south and some market gardens to east no longer visible. Some trotting tracks to north no longer as defined.
2015 (Nearmap)	Market gardens no longer visible on 1160 Richmond Road. Shed constructed near south eastern boundary of 1086 Richmond Road, and near southern boundary of 1032 Richmond Road.	Clearing to north and north west for residential subdivision development. Development of Richmond Road to east, adjoining property to south east used for stockpiles. Former Blacktown City Council Waste Services Depot to south revegetated. Some market gardens to east no longer visible. Some trotting tracks to north and east no longer visible.

Notes:

1 1977 and 2007 images of poor quality.

3.4 **Walkover Site Inspection**

Results of site walkover inspections of Lot 59 Richmond Road, 1032, 1060, 1086, 1132, 1140 and 1160 Richmond Road, and 230, 232 and 234 Grange Road on October 26 and 27, 2015 are summarised in Table 6. No site access was available for Lot 173 Richmond Road, and 1036, 1070, 1080, 1082 and 1148 (access road only) Richmond Road, site description is based on aerial photography interpretation and observations from the road and neighbouring properties.

Table 6: Summary of site walkover and gerial photography interpretation

Address and Lot ID	Lot Infrastructure	Walkover Summary
Lot 59, Richmond Road (DP 1196729)	Metal sheds	Lot currently grazing by sheep.
	Farm dam	Metal shed in south west corner of lot in poor condition, formerly used to store feed for poultry farm (according to discussions with site owner), unable to access shed.
		Metal shed to north of shed, used as shelter for sheep.
		Farm dam near southern boundary of lot. Dam fill embankments likely sourced from dam construction.
		Metal shed used as pump shed for dam, to south west of dam.
		Stockpile near northern boundary including timber.
Lot 173, Richmond Road (DP 1191299) 1	No lot infrastructure	Access road for western portion of 1148 Richmond Road, which is currently under development as residential subdivision.
1032 Richmond	Timber and tile	Timber and tile dwelling in good condition.
Road (Lot 1 DP	dwelling	Metal and timber shed to west of dwelling, used for storage of household
1200165)	Metal sheds	items.
	Shipping containers	Metal shed to north west of dwelling used as poultry sheds and dog shelter.
	Farm dam	Shed to south of dwelling, containing metal, equipment and tools, tyres, poultry stock feed, plastic pipes, wire, household equipment, containers o unknown content, and general rubbish.
		Stockpiles to west of shed, including metal, timber, plastics, building materials and tiles.
		Stockpile of metal items to west of shed, including wheel rims, metal poles and pipes, wire, household items, and metal sheeting.
		Metal shed near northern boundary, unable to access shed.
		Stockpiles near northern boundary, including 2 x metal drums labelled kerosene, wire, metal, timber, plastic, containers of unknown content, corrugated iron, household items, building materials, tyres and general rubbish.
		Metal shed to south of dwelling, unable to access shed.
		Stockpile to north of shed, including timber and timber pallets, metal, and pavers.
		Two shipping containers south of shed, and two shipping containers south west of shed, unable to access shipping containers.
		Stockpile to west of shipping containers near southern boundary, including corrugated iron, concrete blocks, metal poles, wire, pavers, intermediate bulk containers (IBC) of unknown content, and building materials.

Address and Lot ID	Lot Infrastructure	Walkover Summary
		Boat and trailers near southern boundary.
		Children's limber playhouse near southern boundary.
		7 x IBC near southern boundary, unknown content.
		Farm dam near south western boundary, draining north through drainage depression.
		Stockpile of fill in south western corner of lot, and including plastics, household Items, building materials, metal, timber, vegetation, concrete blocks, pavers, corrugated iron, and general rubbish.
		Several old vehicles near southern boundary.
1036 Richmond Road (Lot 7 DP	Dwelling	Sile currenlly used by Universal Brotherhood Mission, Sant Nirankari Congregation Hall.
741072) 1	Sheds	Fibrous cement sheeting and tile dwelling.
	Farm dam	Metal shed to south east of dwelling used as carport.
		Sheds to west of dwelling.
		Farm dam in western portion of lot.
1060 Richmond Road (Lot 12, Sec	Brick and tile dwellina	Brick and tile dwelling in good condition in north eastern portion of lot.
M, DP 193074)	Metal sheds	Metal and timber shed used as a family room to west of dwelling.
	Metal shed used	Plastic rainwater tank to west of dwelling.
	as a family room	Concrete pad to south of dwelling.
	Fibrous cement clad shed formerly used as granny flat	Metal sheds to west of dwelling containing building materials, metal timber, drums and containers of unknown content, vehicle parts, plastic pipe, small stockpile of soil, wire and general rubbish.
		Stockpile near north western boundary including metal, plastic pipe, timber, wire, and rusty drum of unknown content.
		Metal shed near north western boundary, unable to access shed.
		Stockpile to east of shed near northern boundary, including wire, metal, plastic pipes, building materials, limber, household items, drums and containers of unknown content, corrugated iron, bricks, vehicle batteries and general rubbish. Brick incinerator with evidence of burning.
		Brick, fibrous cement clad and metal shed near eastern boundary, containing household items, likely formerly used as granny flats.
		Broken pieces of fibrous cement sheeting (PACM) near granny flats.
		Stockpile of metal and building materials near eastern boundary.
		Southern portion of lot used as grazing paddock for horses.
		Concrete pad in paddock near eastern boundary.
		Corrugated iron and timber shed near central area of lot containing metal and corrugated iron, household items, building materials, limber, wire, tyres, metal pipe and general rubbish. Some staining on broken concrete floor.
		Stockpile in central area of lot, including plastic pipes, household items, corrugated iron, containers of unknown content, metal, timber, plastic, small stockpile of sand, bricks, and general rubbish.

Address and Lot ID	Lot Infrastructure	Walkover Summary	
1070 Richmond	Dwelling	Brick and tile dwelling.	
Road (Lot 54, DP 1196583) ¹	In ground pool	In ground pool to west of dwelling.	
	Sheds	Sheds to west of dwelling, near northern boundary.	
		Sheds to south west of dwelling.	
		Western portion of site open paddock.	
		Stockpiles in paddock and near southern boundary.	
1080 Richmond Road (Lot 53, DP 1196583) ¹	No lot infrastructure	Lot is cleared and generally undeveloped, with no lot infrastructure.	
1082 Richmond Road (Lot 52, DP 1196583) ¹	No lot infrastructure	Lot is cleared and generally undeveloped, with no lot infrastructure.	
1086 Richmond	Brick and tile	Brick and tile dwelling in good condition in south east portion of lot.	
Road (Lot 51, DP 1196583)	dwelling	Metal shed to south of dwelling, unable to access shed.	
1170000	Metal sheds Greenhouses	Metal shed to south of dwelling used for storage and packing vegetables, and storage of vehicles and tractors, packaging (pallets and Styrofoam	
	Farm dams	boxes), tools, containers of unknown content, fertilizer and equipment.	
	Metal AST	Containers of oil (approximately 13) to north east of shed. Hydrocarbon staining and odour.	
		Stockpiles near south eastern boundary, including corrugated iron, tiles, concrete pipes, plastic, drums and containers of unknown content, wire, equipment, greenshade cloth, metal, concrete pieces, and general rubbish.	
		Concrete block and metal shed near south eastern boundary, unable to access part of shed. Metal AST labelled diesel fuel in shed, fuel and oil odour, some staining on concrete and ground near AST. Containers of unknown content within shed.	
		Rusty drums to west of shed, unknown content.	
		Greenhouses near south eastern boundary.	
		Majority of site used for market gardens.	
		Two farm dams near south western, and one dam near north eastern boundaries.	
		Shed used as pump house to south east of dam near north western boundary.	
1132 Richmond Road (Lot 50, DP	Brick and tile dwellings	Two brick and tile dwellings near north eastern and south eastern boundaries.	
1196583)	Metal, corrugated iron and timber sheds	Corrugated iron and timber shed near north eastern boundary, containing household items, bags of sand, containers of unknown content, and car battery.	
	Farm dam Metal ASTs	Stockpile to west of shed including metal, corrugated iron, timber, and plastic.	
		Possible filled area, and stockpile of fill in south eastern corner of lot.	
		Large metal shed complex near southern boundary, eastern portion of sheds used for storage of vehicles, packaging materials (egg cartons), cardboard boxes, and packaged eggs. Remainder of sheds in complex	

Address and Lot ID	Lot Infrastructure	· Walkover Summary	
		used for poullry (egg) farming.	
		Metal AST to north of shed, likely fuel, some staining on ground and fuel odour.	
		Stockpiles near sheds and items scattered across the working area of the site, including timber, metal, wire, lyres, containers of unknown content, plastic hose, household items, and general rubbish.	
		Two rusty drums used for burning off to north of shed complex, evidence of burning.	
		Farm dam near northern boundary, fill embankments likely sourced during dam construction.	
		Two metal sheds used as pump houses to south of dam.	
		Approximately 10 metal feed silos located near sheds.	
		Constructed drainage channel to north of sheds with odorous and discoloured water/liquid. General rubbish within the drainage channel.	
		Metal shed to south of dam, containing timber pallets, equipment parts, containers of unknown content, and general rubbish.	
		Metal shed with bare earth floor to west of shed complex near southern boundary, containing drums and containers of unknown content, timber pallets, bags of sodium bicarbonate, feed and salt, metal pipe, engine parts, metal wire, corrugated iron, rusty old metal AST with unknown content, and general rubbish.	
		Stockpile of poultry manure near central southern boundary.	
		Metal shed in poor condition with bare earth floor near central southern boundary containing timber, metal, containers of unknown content, vehicle batteries, plastic, corrugated iron, and general rubbish.	
		Metal shed in poor condition with bare earth floor near central southern boundary containing timber, metal, plastics, tractors, tyres, equipment, vehicle and equipment parts, and general rubbish.	
		Metal shed complex near central southern boundary, egg processing and packaging area and likely formerly used for poultry (egg) farming, unable to access part of shed.	
		Metal feed silo to west of shed complex.	
		Remainder of lot open paddock with extensive weeds and overgrown vegetation.	
		Stockpiles in paddock area near southern boundary containing concrete, plastics, timber and metal.	
1140 Richmond	Brick and tile	Brick and tile dwelling in good condition near eastern boundary.	
Road (Lot 8, DP 235714)	dwelling Metal sheds	Corrugated iron shed with concrete floor to south west of dwelling, used for storage of vehicles and containing lawn mower, tools, household items, and containers of unknown content.	
		Corrugated iron and timber shed with bare earth floor to west of shed, unable to access part of shed, other part of shed containing concrete blocks, metal, timber and timber pallets, metal pipes, and containers of unknown content.	
		Old vehicle to west of sheds.	
		Stockpile to west of sheds, including bricks, timber pallets, concrete blocks.	

Address and Lot ID	Lot Infrastructure	Walkover Summary
	r produce	Fill embankment to west of sheds.
		Remainder of lot used as grazing paddock, for goats and horses.
		Stockpile near northern boundary including bricks, timber and wire.
1148 Richmond Road (Lot 7, DP 235714) – access driveway only ¹	Driveway	Unsealed access drive for western portion of 1148 Richmond Road, which is currently under development as residential subdivision. No lot infrastructure.
1160 Richmond	Brick and tile dwelling	Brick and tile dwelling in good condition in eastern corner of lot.
Road (Lot 5, DP 235714)		Corrugated iron shed to south of dwelling, unable to access shed.
	Metal sheds	Majority of site is open paddock. Owner mentioned that the paddock area was formerly used for market gardens.
		Farm dam in paddock near north eastern boundary.
		Stockpile (formerly corrugated iron shed, dilapidated) to south of dam.
		Concrete slab near south eastern boundary.
		Corrugated iron shed in poor condition near central southern boundary containing tractors, equipment, tools, Styrofoam boxes, containers of unknown content, tyres, building materials and general rubbish. Unable to access part of the shed.
		Stockpile to north west of shed including bricks, metal, equipment, tyres, tiles, timber and general rubbish.
		Metal shed in poor condition near central southern boundary, unable to access shed.
		Stockpile to west of shed including tyres, containers of unknown content, plastics, metal, timber, household items, wire, paper, vehicle batteries, tiles, building materials, and general rubbish.
230 Grange Road (Lot 20, DP	Metal and timber sheds	Lot currently used as a plant nursey, Parklea Plants and Pots / Marsden Park Pots and Plants.
1191512)	Greenhouses and	Metal and timber shed used as an office and retail sales area.
	former greenhouses	Open paved and gravel retail nursery area in eastern portion of lot for plants and other garden and landscaping products.
	Shipping container	Concrete and tiled in ground pool near southern boundary.
	Metal AST	Greenhouse constructed of corrugated iron, metal and shadecloth in
	Retail nursery	north eastern portion of lot with bare earth and gravel floor, with concrete paths, and containing plants.
		Metal and plastic greenhouse structure to west of greenhouse, currently dismantling structure.
		Metal shed to north west of office/shed with concrete floor in good condition, containing vehicles, motorbike, tractors, pots, wheels, tyres, containers of unknown content, pumps, containers labelled paint, tools and other miscellaneous items.
		Shipping container to west of office/shed, unable to access shipping container.
		Metal AST, rusty and in poor condition on broken concrete bunding to north of shipping container.

Address and Lot ID	Lot Infrastructure	Walkover Summary
		Stockpiles near southern boundary, including plastic pots, plants, timber pallets, metal trailers for use in the nursery, corrugated iron, timber, plastic pipe, metal pipes, drums and containers of unknown content, and general rubbish.
		Burnt area near western boundary.
		Significant site filling observed in western portion of lot, covered in grass, trees and other vegetation. Concrete blocks forming a retaining wall observed near the western edge of filled area.
		Watercourse in western portion of lot, draining north to farm dam on neighbouring property.
		Filled area observed to west of watercourse.
232 Grange Road	Brick and tile	Brick and tile dwelling in good condition near south western boundary.
(Lot 10, DP 70287)	dwelling Metal sheds Metal ATSs	Metal sheds to north of dwelling near western boundary, unable to access sheds, but discussions with owner indicated they are used for storage of household items and vehicles.
		Large metal and timber shed with bare earth floor to north east of dwelling near eastern boundary, containing vehicles, metal, tractors, pols, limber, vehicle parts, containers of unknown content, building materials, plastics, and miscellaneous items. Discussions with owner indicated the shed was formerly used as poultry shed.
		Stockpile to west of shed, including metal, vehicle parts, plastic pipe, building materials, and equipment.
		Metal shed near western boundary, discussions with owner indicated shed was formerly used as poultry shed, unable to access shed.
		Three rusty metal silos, discussions with owner indicated they were formerly used for water and poultry feed.
		Paddock in northern portion of lot used for sheep grazing, southern portion of lot open paddock.
234 Grange Road	Brick and tile	Brick and lile dwelling in good condition near western boundary.
(Lot 11, Sec M, DP 193074)	dwelling Metal sheds	Stockpile of bricks and metal to north west of dwelling, near western boundary.
		Metal shed to north of dwelling, used for storage of furniture and miscellaneous items.
		Stockpile to north of shed, including timber and timber pallets, containers of unknown content, corrugated iron, tyres, plastic pipe and wire.
		Metal shed near central western boundary with timber floor, containing tractors and lawn mower, containers labelled oil and other containers of unknown content, wire and metal.
		Stockpile to north of shed, including corrugated iron, plastic drum of unknown content, timber, plastic pipe and metal.
		Stockpile to south of shed, including equipment, trampoline, timber, and corrugated iron.
		Northern and eastern portions of lot open paddock.

<u>Notes</u>

¹ No site access available for walkover on site – description from aerial photography interpretation and inspection undertaken from road and neighbouring properties.

Environmental Concern/Contaminants Areas

Primary Concern

Our assessment of site AECs and COPCs (Table 7) is made on the basis of available site history, aerial photograph interpretation and site walkovers. Maps showing locations of identified AECs is provided in Sheets A018 to A022 (Attachment C).

Table 7: Areas of environmental concern and contaminants of primary concern.

AEC '	Potential for Contamination	СОРС	Contamination Likelihood
A – Dwellings and former dwellings	Pesticides and heavy metals may have been used underneath dwellings for pest control. Dwelling construction may include ACM and/or lead based paints.	HM, OCP/OPP and asbestos	Medium
B – Sheds and former sheds – unable to gain access to some	Sheds may currently (or have previously) stored fuel, oils, or containers/drums of unknown content; asbestos sheeting (PACM); pesticides and/or been treated with heavy metals and pesticides (pest control). Shed construction may include ACM and/or lead based paints.	HM, TRH, BTEX, PAH, OCP/OPP and asbestos	Medium - high
C – Portions of site, former market garden or orchard use	Application of agricultural chemicals, use of pesticides and heavy metals for pest control during site use as market gardens or orchards.	HM and OCP/OPP	Medium
D - Site filling .	Fill material of unknown origin and quality.	HM, TRH, BTEX, PAH, OCP/OPP and asbestos	Medium
E - Stockpiles	Contaminants from unknown contents of stockpiles, containers/drums of unknown content, and general refuse may have spilled or leaked onto underlying soil.	HM, TRH, BTEX, PAH, OCP/OPP and asbestos	Medium - high
F - Dams	Contaminants resulting from agricultural/ market garden land uses may have washed into and accumulated in dams.	HM and OCP/OPP	Low - medium
G - Broken fibrous cement sheeting (PACM)	Potential ACM material observed.	Asbestos	Medium - high
H - Old vehicles and batteries	Fuel, oil or battery acid containing lead from old vehicles may have contaminated soil.	HM, TRH, PAH and BTEX	Low
I – AST	Potentially used for hydrocarbon storage which may have spilled or leaked onto underlying soil.	TRH, BTEX, PAH	Medium - high

AEC '	Potential for Contamination	COPC	Contamination Likelihood
J – Chicken sheds on 1132 Richmond Road	Sheds potentially bullt on top of ACM layer or resulting contamination from agricultural or chemical use or asbestos during construction.	Asbestos, HM, OCP/OPP	Medium
K – Drainage channel on 1132 Richmond Road	Contaminants may have washed into and accumulated in drainage channel, as odour and discolouration observed.	HM, TRH, BTEX, PAH and OCP/OPP	Medium - high
L - Greenhouses	Application of agricultural chemicals, use of pesticides and heavy metals for pest control during site use as greenhouses.	HM and OCP/OPP	Medium
M - Nursery	Application of agricultural chemicals, use of pesticides and heavy metals for pest control during site use as nursery.	HM and OCP/OPP	Medium

Notes

¹ Locations identified on AEC maps in Attachment C.

5 Conclusions and Recommendations

5.1 Conclusions

The results of the site history and walkover inspection indicates that portions of the site have been used for rural and rural residential purposes since at least 1947 and have the following potential contamination sources:

- Past dwelling construction and maintenance have the potential to have introduced contaminants in the form of asbestos (as a construction material), pesticides (pest control) and heavy metals (paints, pest control).
- o Sheds and former sheds may currently or previously have stored fuel, oils or containers/drums of unknown content, leading to hydrocarbon, heavy metal or OCP/OPP contamination. Lead based paints or PACM (fibrous cement sheeting containing asbestos) may have been used during construction. The sheds may have been treated with pesticides and heavy metals for pest control.
- Former market garden and/or orchard use (on 1060, 1070, 1080, 1082, 1086, 1140, and 1160 Richmond Road, and 234 Grange Avenue) may have introduced heavy metals or pesticides into the soil.
- o Fill (placed without permission, then regraded under 2001 consent) was identified on 1082 Richmond Road in BCC historical records, it is unclear as to the exact location of fill on the lot. Localised fill importation to other lots may have occurred during dam construction, and stockpiles of fill were observed at various locations across the site potentially introducing heavy metals, hydrocarbons and asbestos.
- Stockpiles and containers/drums of unknown content may have introduced heavy metals, hydrocarbons, OCP/OPP and asbestos to the site soils.
- Farm dams may have accumulated agricultural land use driven contaminants.
- Several broken pieces of fibrous cement sheeting were observed onsite (1060 Richmond Road) and could contain asbestos.

- Fuel, oil or battery acid from old vehicles may have introduced contaminants to the soil such as heavy metals and hydrocarbons.
- ASTs were observed on 1086 and 1132 Richmond Road, and 230 Grange Avenue, some with hydrocarbon odour and staining nearby (1086 and 1132 Richmond Road) and may have contained fuel or oils, introducing hydrocarbons to the soil.
- Chicken sheds on 1132 Richmond Road may have potentially been built on top of an asbestos layer, sometimes used to retain heat within the sheds, or been contaminated by agricultural land use.
- Drainage channel on 1132 Richmond Road to north of shed complex with odorous and discoloured water/liquid observed, may have introduced site contaminants to the soil.
- o Greenhouses and former greenhouses on 1086 and 1160 Richmond Road, and 230 Grange Avenue may have introduced heavy metals or pesticides into the soil.
- Use of 230 Grange Avenue as a retail nursery may have resulted in heavy metals or pesticides contamination.

5.2 Recommendations

It is recommended that walkover site inspections are completed on all lots previously unavailable for site access at time of walkover site inspections, to confirm AECs already identified or further identify potential COPC (Lot 173 and 1036, 1070, 1080, 1082 and 1148 Richmond Road).

To address potential AECs, a detailed site investigation (DSI) including intrusive soil sampling is recommended. Testing is recommended to address all AECs. Testing under all dwelling and shed footprints (plus I m curtilage) is recommended following their demolition to determine any residual impacts from previous use. A walkover inspection of remaining site should be conducted following removal of refuse to assess any potential residual impacts.

The sampling and analysis plan (SAP) for the DSI is to be developed in accordance with NSW EPA (1995) Sampling Design Guidelines and a risk based assessment. Assessment shall address each of the identified AECs and assess COPC identified for each AEC (Table 7). Results of the site testing shall be assessed against site acceptance criteria (SAC) developed with reference to ASC NEPM (1999, amended 2013).

6 Limitations Statement

The preliminary site investigation was undertaken in line with current industry standards.

It is important, however, to note that no land contamination study can be considered to be a complete and exhaustive characterisation of a site nor can it be guaranteed that any assessment shall identify and characterise all areas of potential contamination or all past potentially contaminating land-uses. This is particularly the case on sites where full access is not possible due to the presence of structures (dwellings and sheds), a long history of rural or rural residential land use, and where additional assessment work is identified as being required. Therefore, this report should not be read as a guarantee that no contamination shall be found on the site. Should material be exposed in future which appears to be contaminated or inconsistent with natural site soils, additional testing may be required to determine the implications for the site.

Martens & Associates Pty Ltd has undertaken this assessment for the purposes of the current development proposal. No reliance on this report should be made for any other investigation or proposal. Martens & Associates accepts no responsibility, and provides no guarantee regarding the characteristics of areas of the site not specifically studied in this investigation.

7 References

Blacktown City Council - DA/BA/CC records (2015).

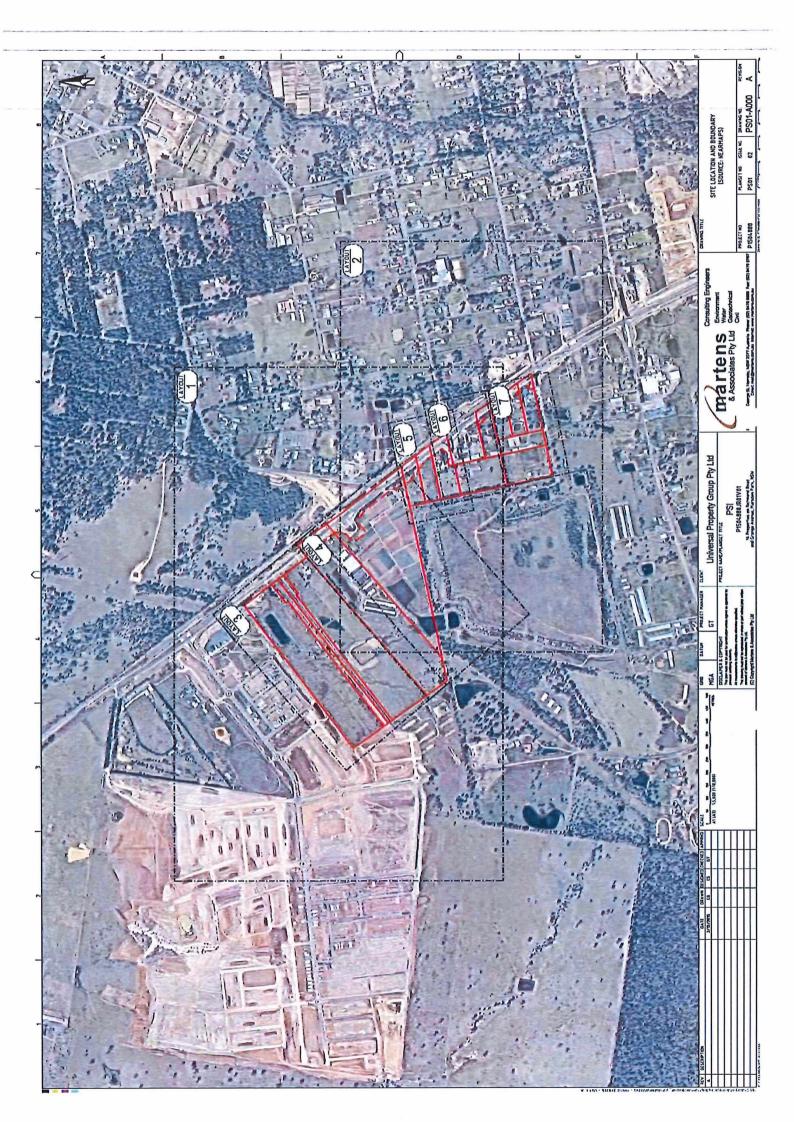
Blacktown City Council - Online Maps (1977).

Department of Lands – Map sales. Aerial photographs (1947, 1955, 1965, 1986, 1998).

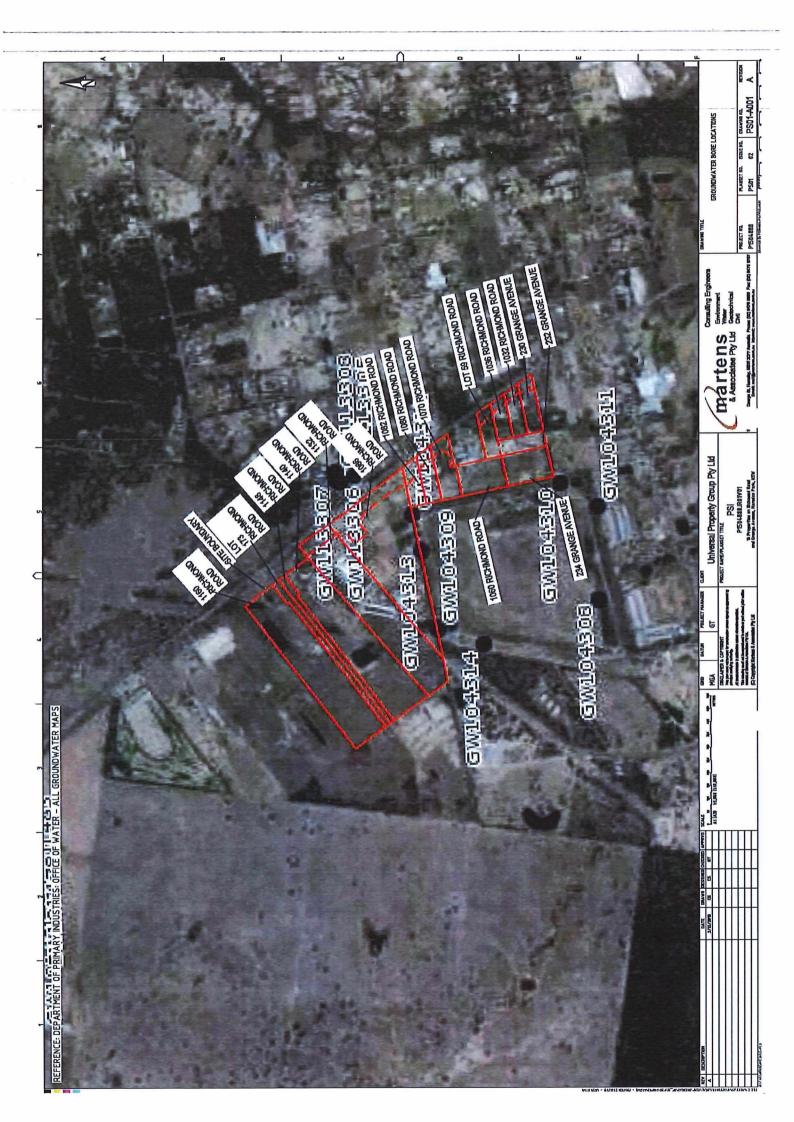
Google Maps (2007).

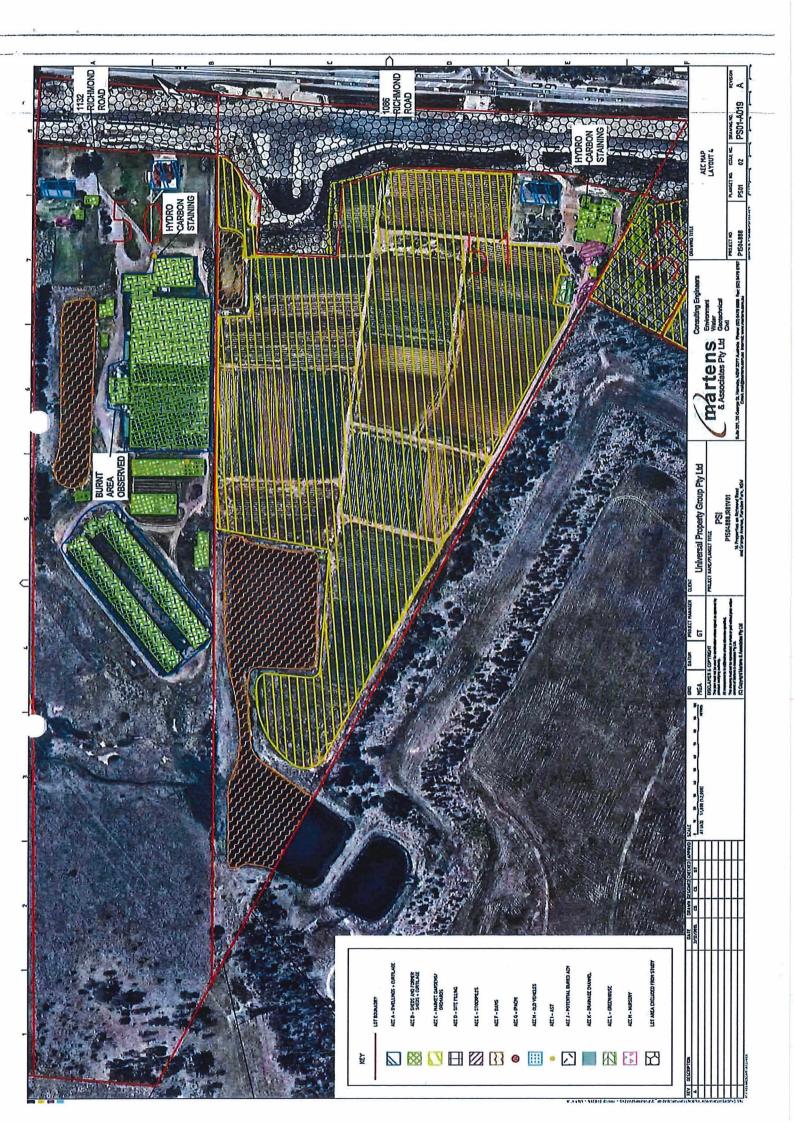
Martens & Associates (2015) Preliminary Salinity and Geotechnical assessment: Lots 59 and 173 Richmond Road, 1032, 1036, 1060, 1070, 1080, 1082, 1086, 1132, 1140, 1148 and 1160 Richmond Road, and 230, 232 and 234 Grange Avenue, Marsden Park, NSW. (P1504888JR05V01)

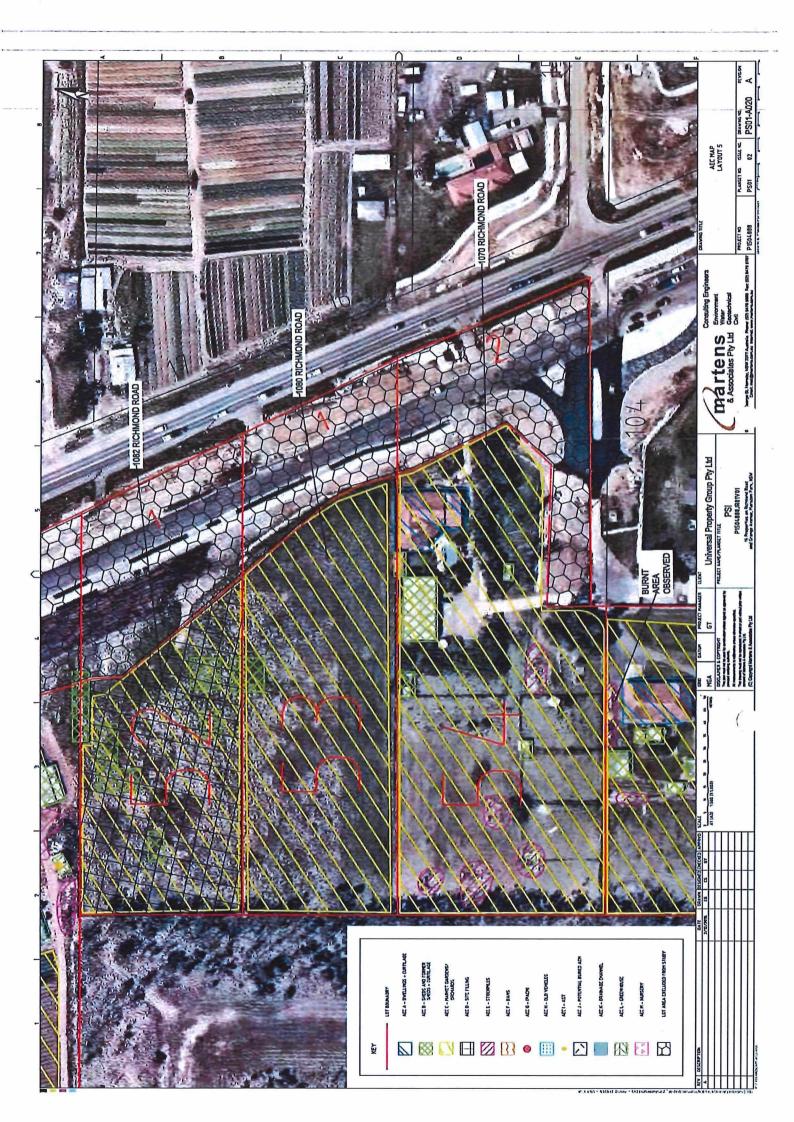
Nearmap (2015).

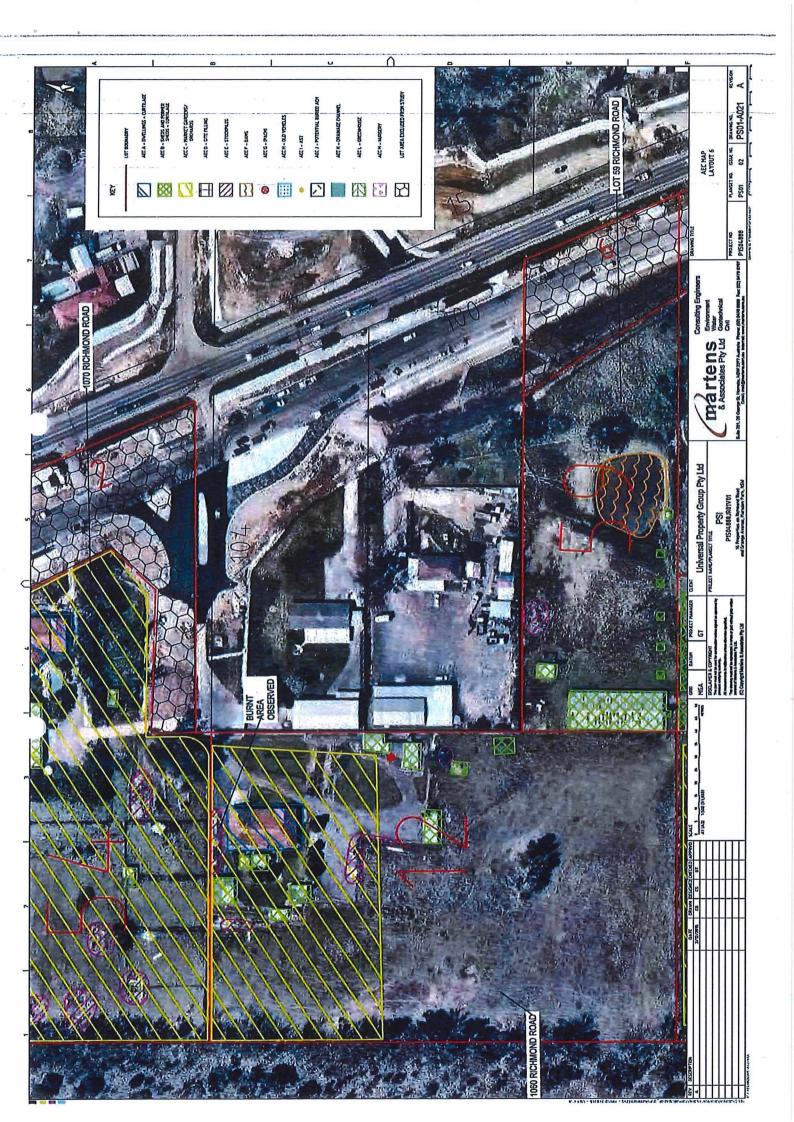

- NEPC (1999, amended 2013) National Environmental Protection (Assessment of Site Contamination) Measure (ASC NEPM,1999 amended 2013).).
- NSW DEC (2006) 2nd Ed. Contaminated Sites: Guidelines for the NSW Site Auditor Scheme.
- NSW Department of Environment & Heritage (eSPADE, NSW soil and land information), www.environment.nsw.gov.au.
- NSW Department of Mineral Resources, (1991) Penrith 1:100,000 Geological Sheet 9030.
- NSW Department of Primary Industries Office of Water, groundwater database, accessed October 6, 2015. http://allwaterdata.water.nsw.gov.au/water.stm
- NSW EPA (1995) Sampling Design Guidelines.
- NSW OEH (2011) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites, 2nd Edition.

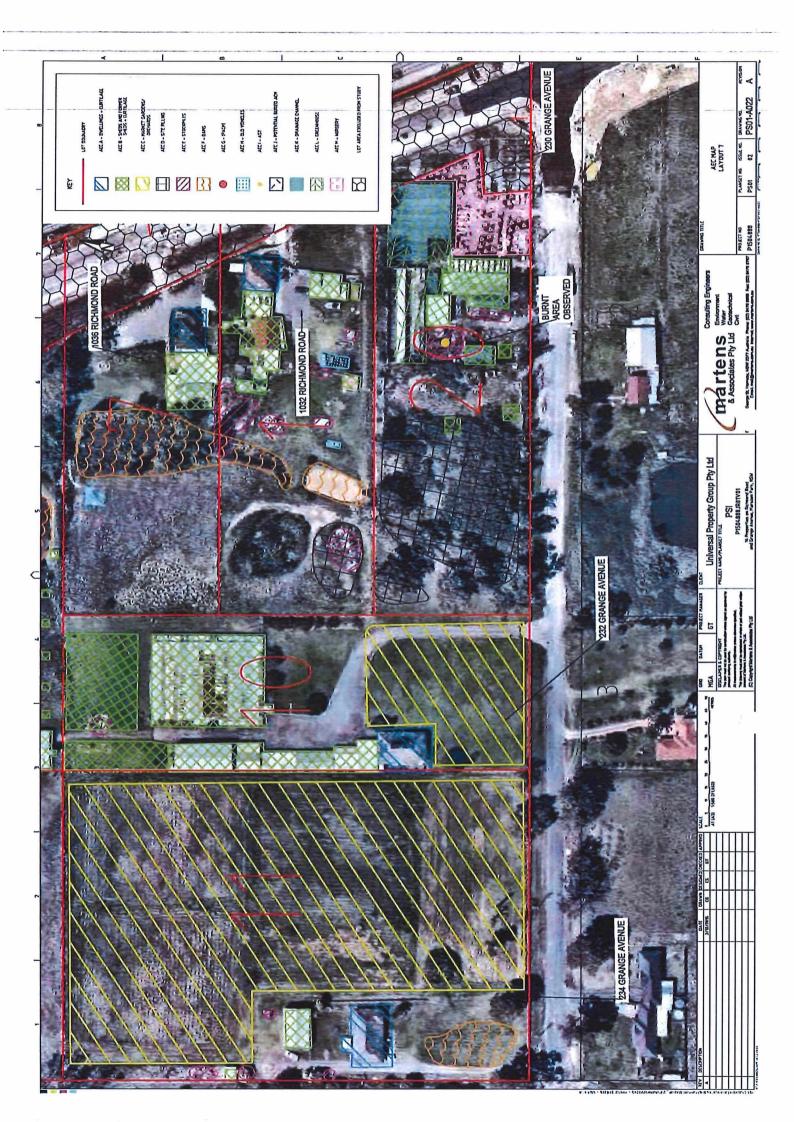
SIX Viewer, LPI (2015).

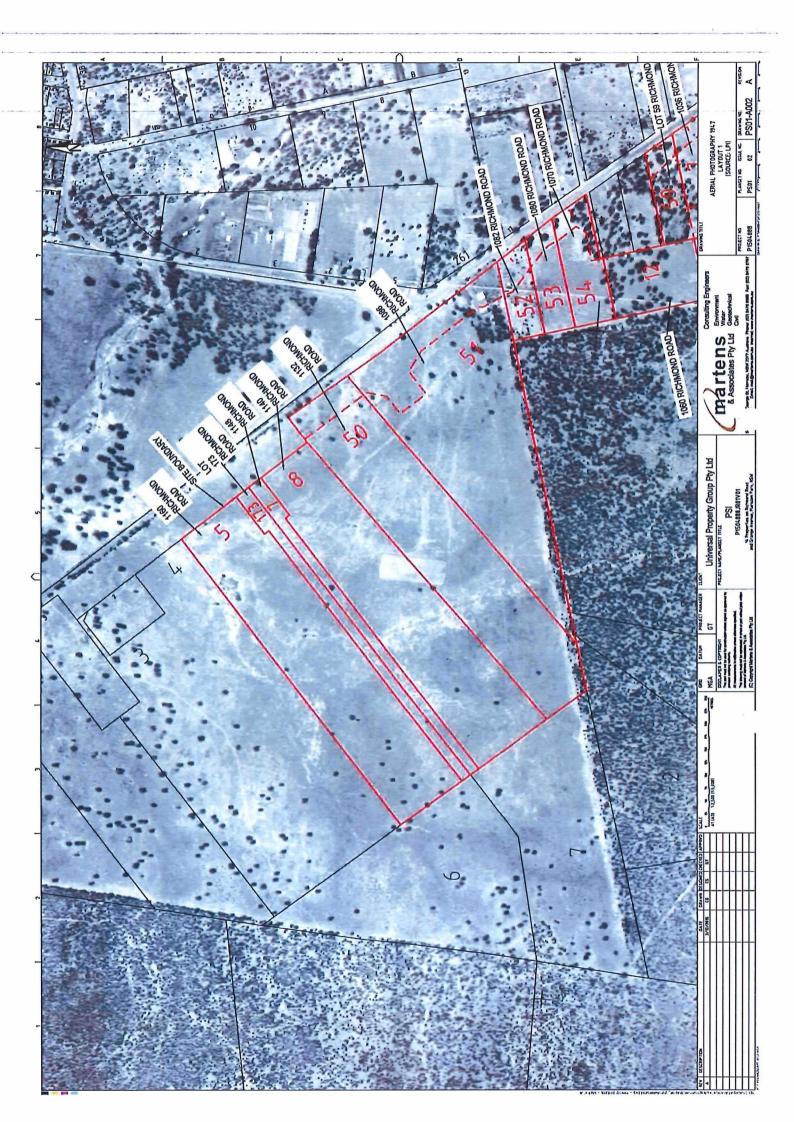

8 Attachment A – Site Plan

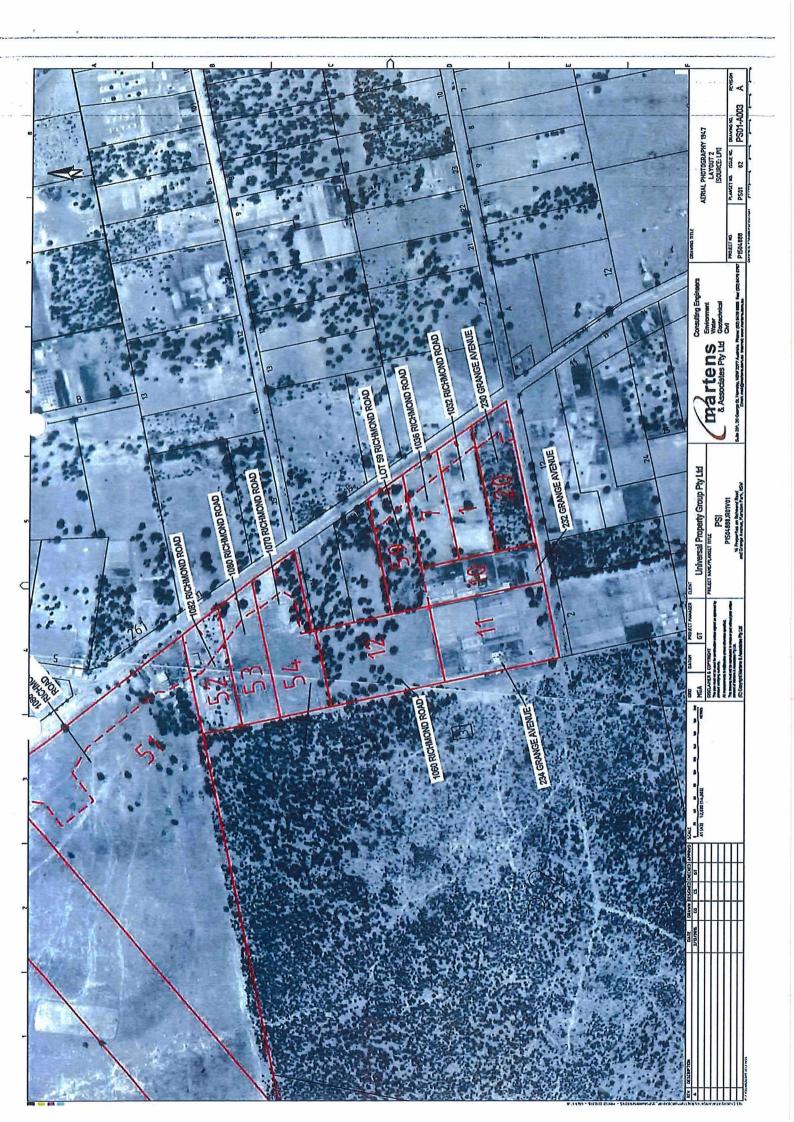

Attachment B - Groundwater Bore Locations

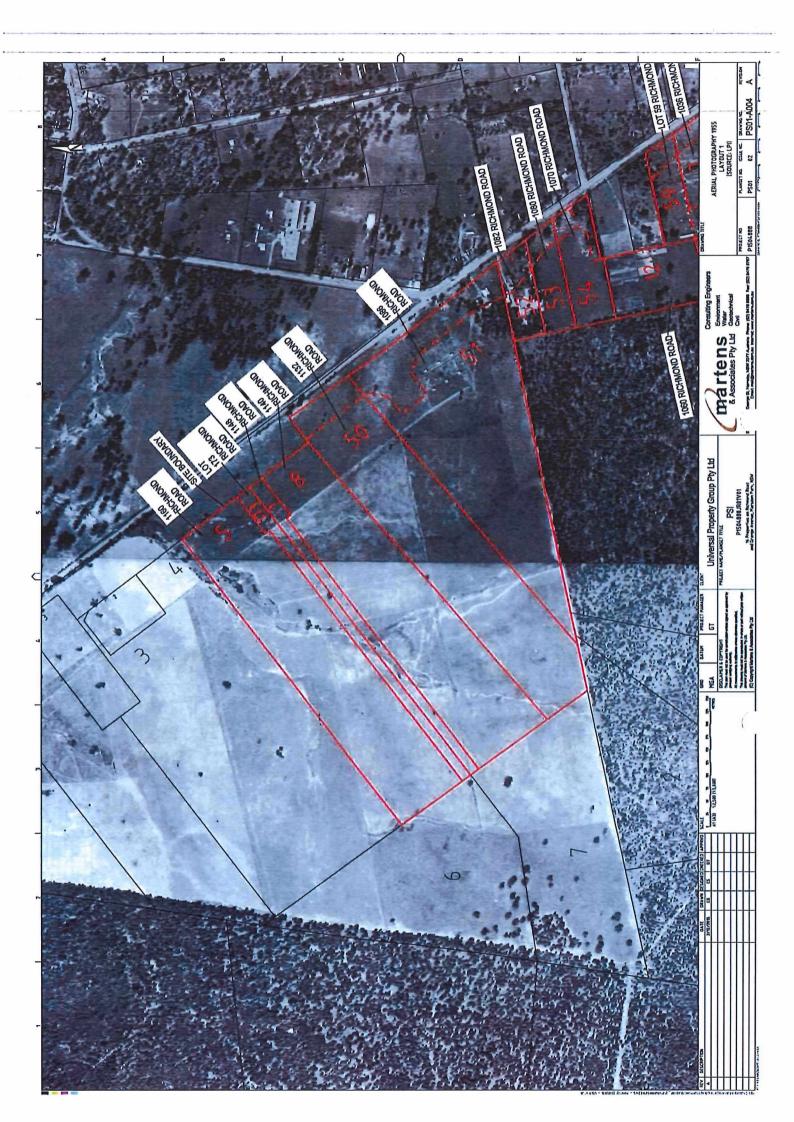


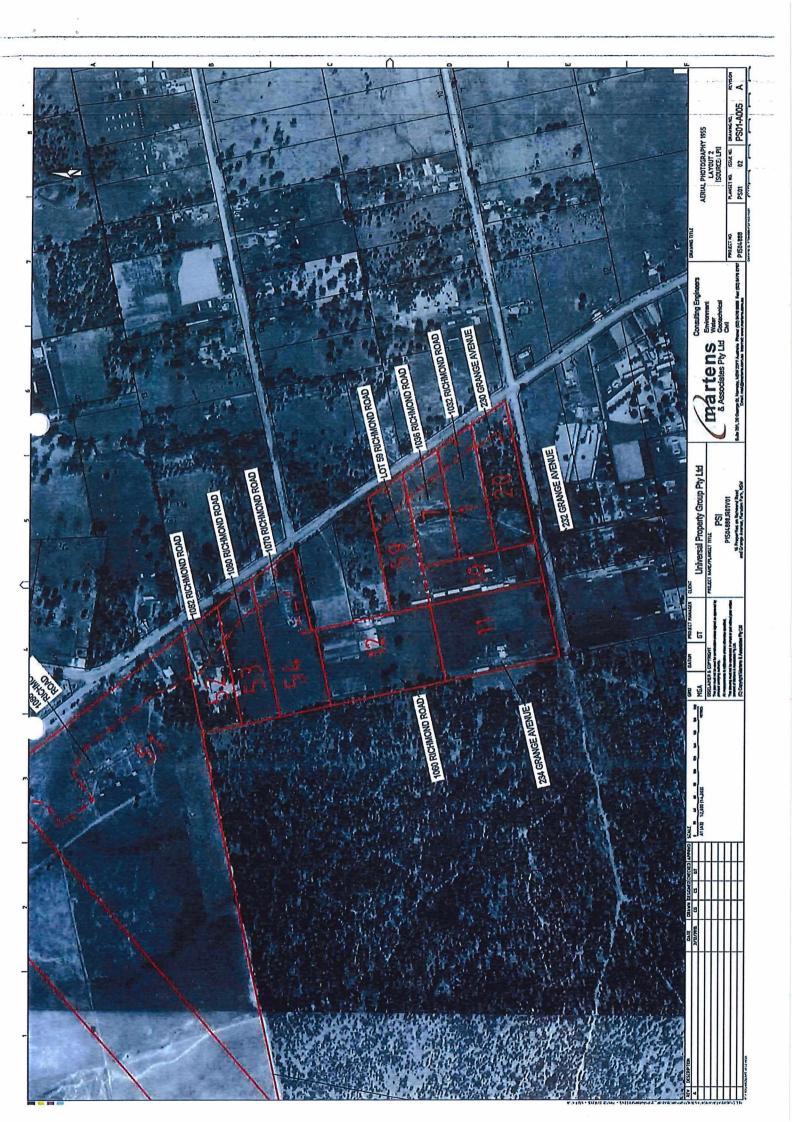


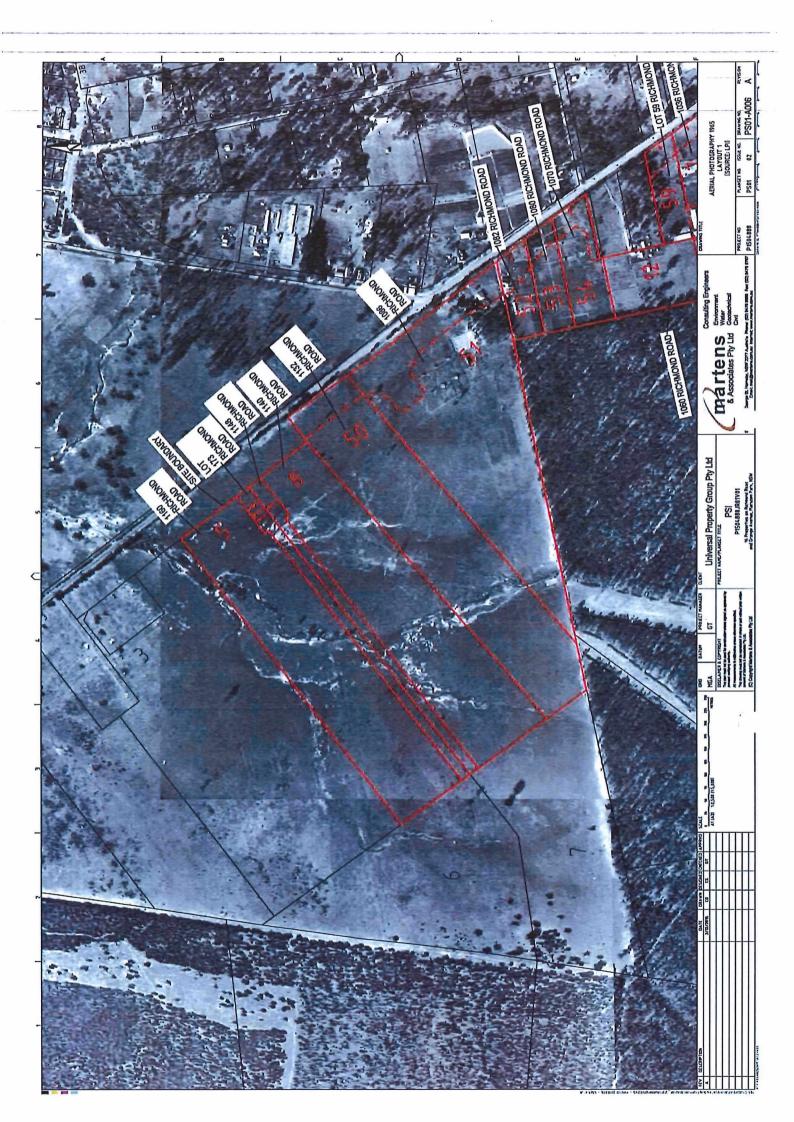


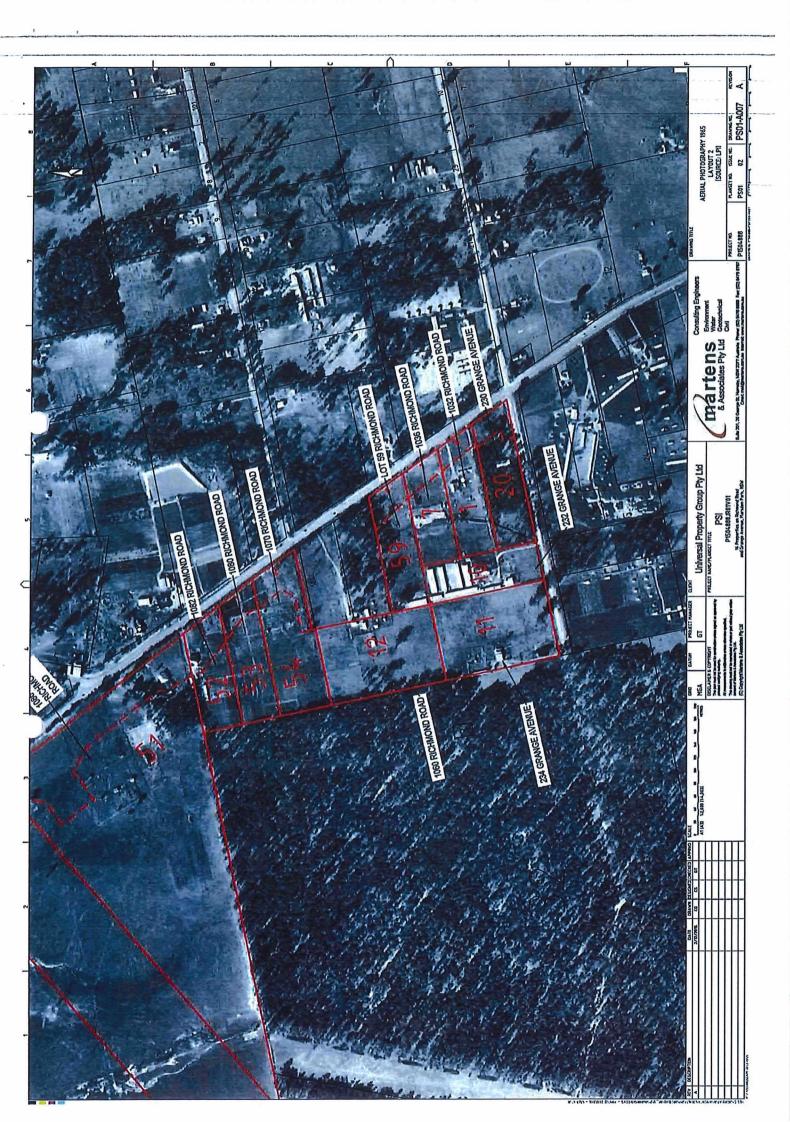


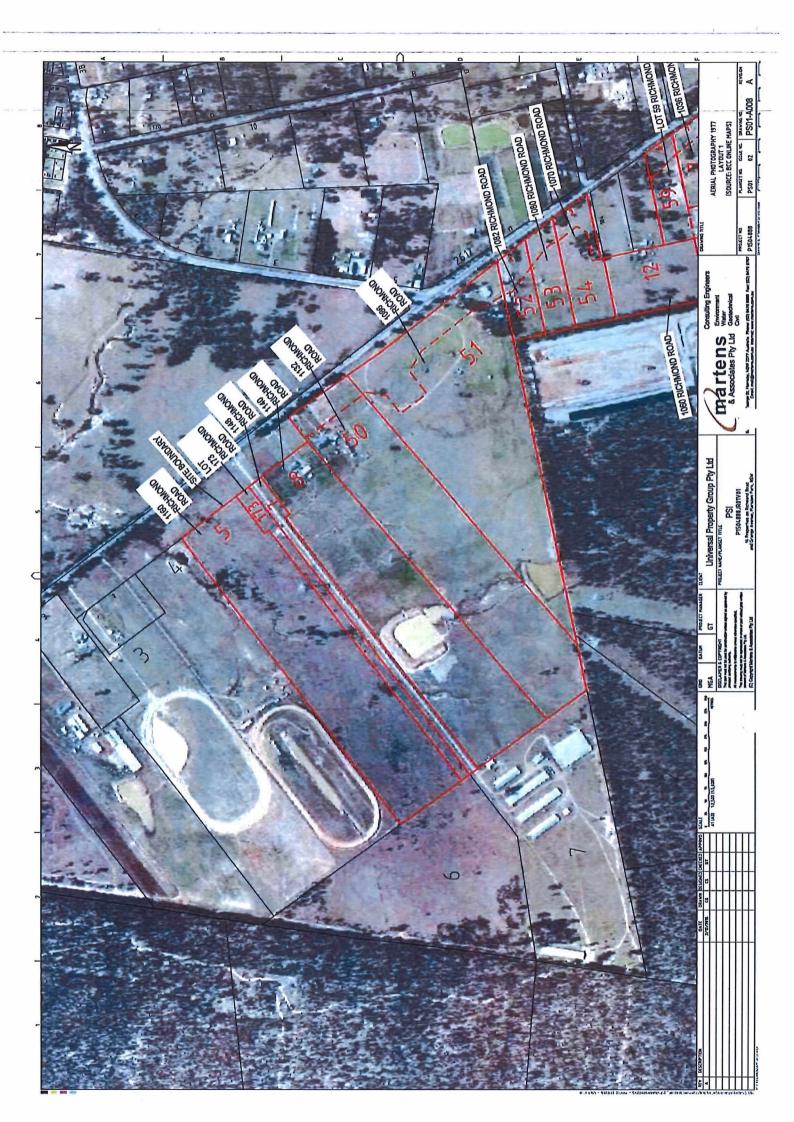


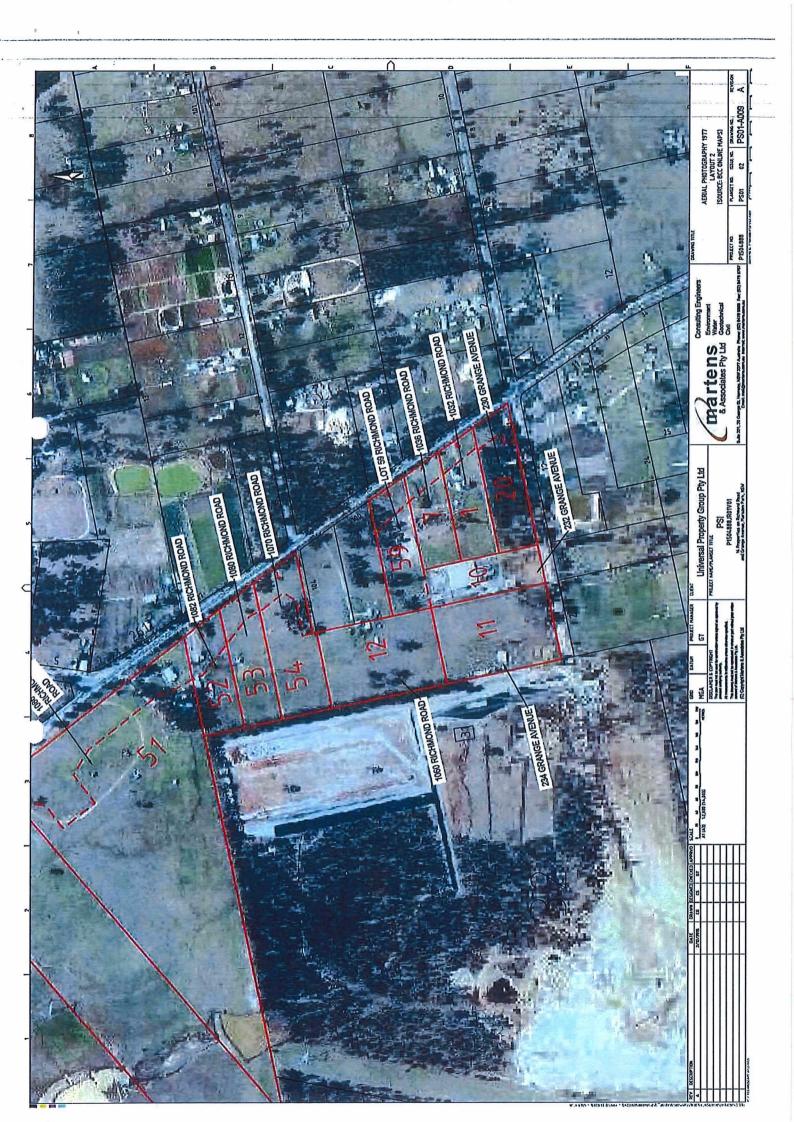


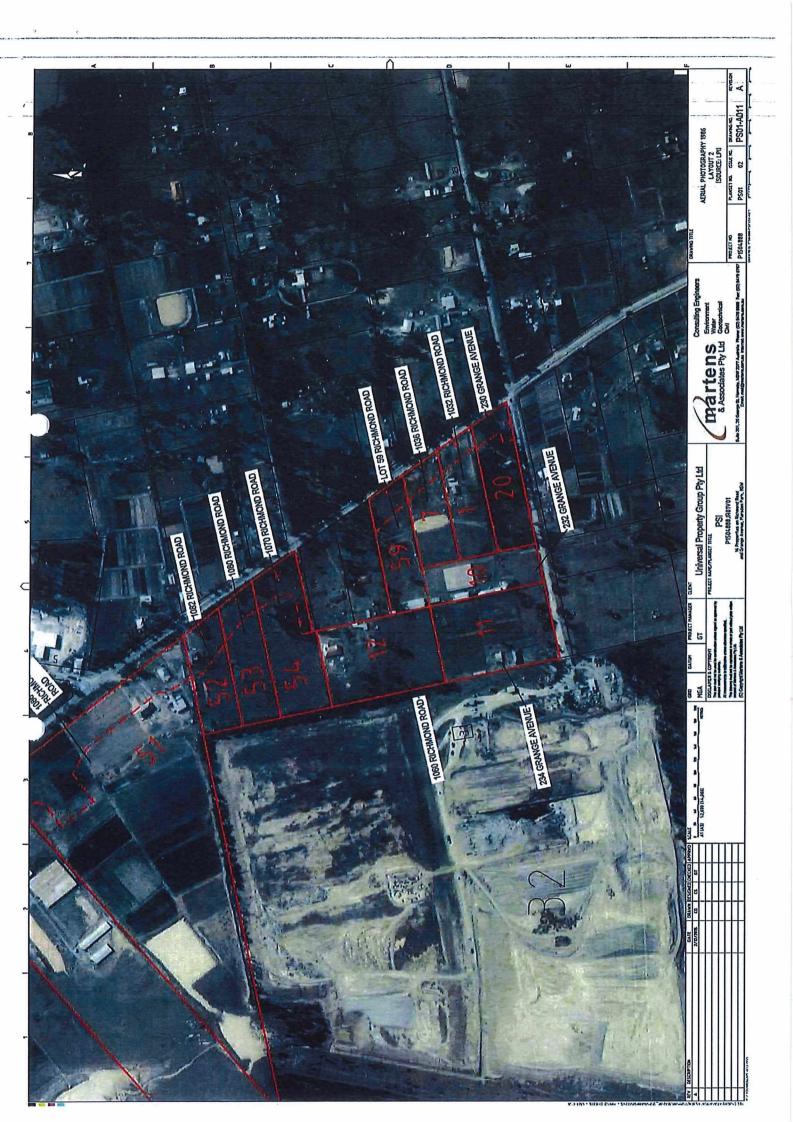

11 Attachment D – Historical Aerial Photographs

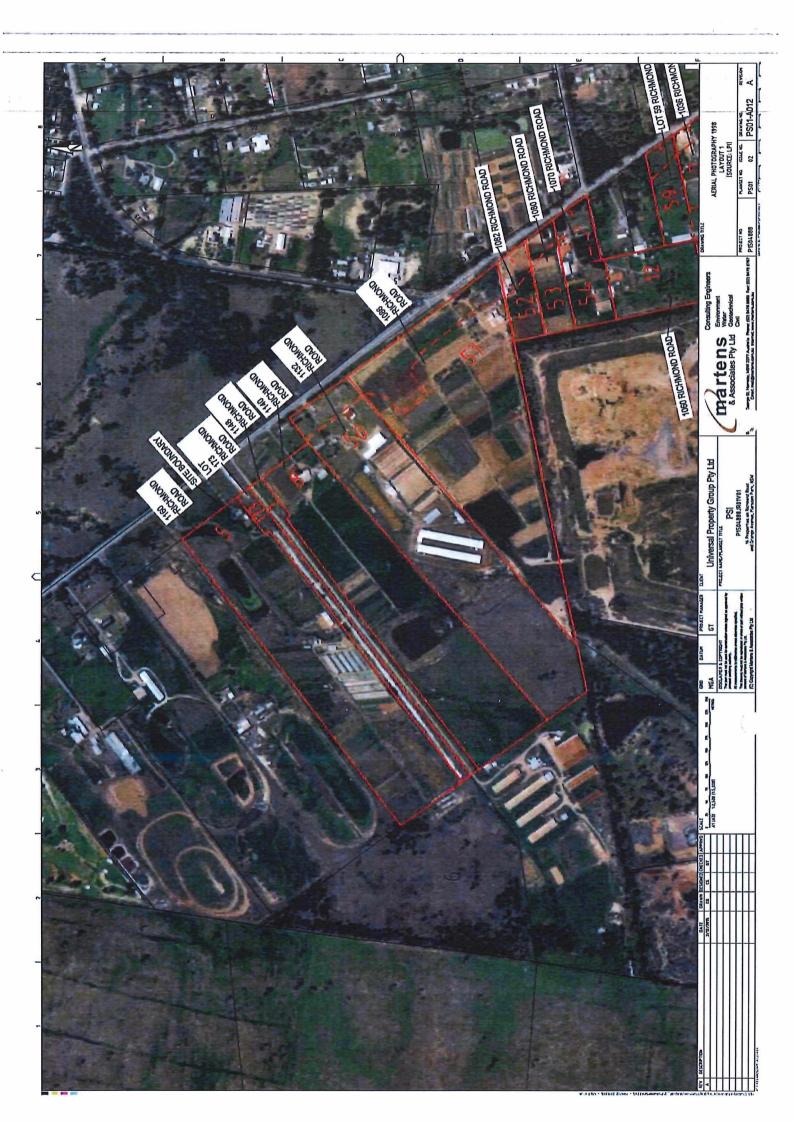


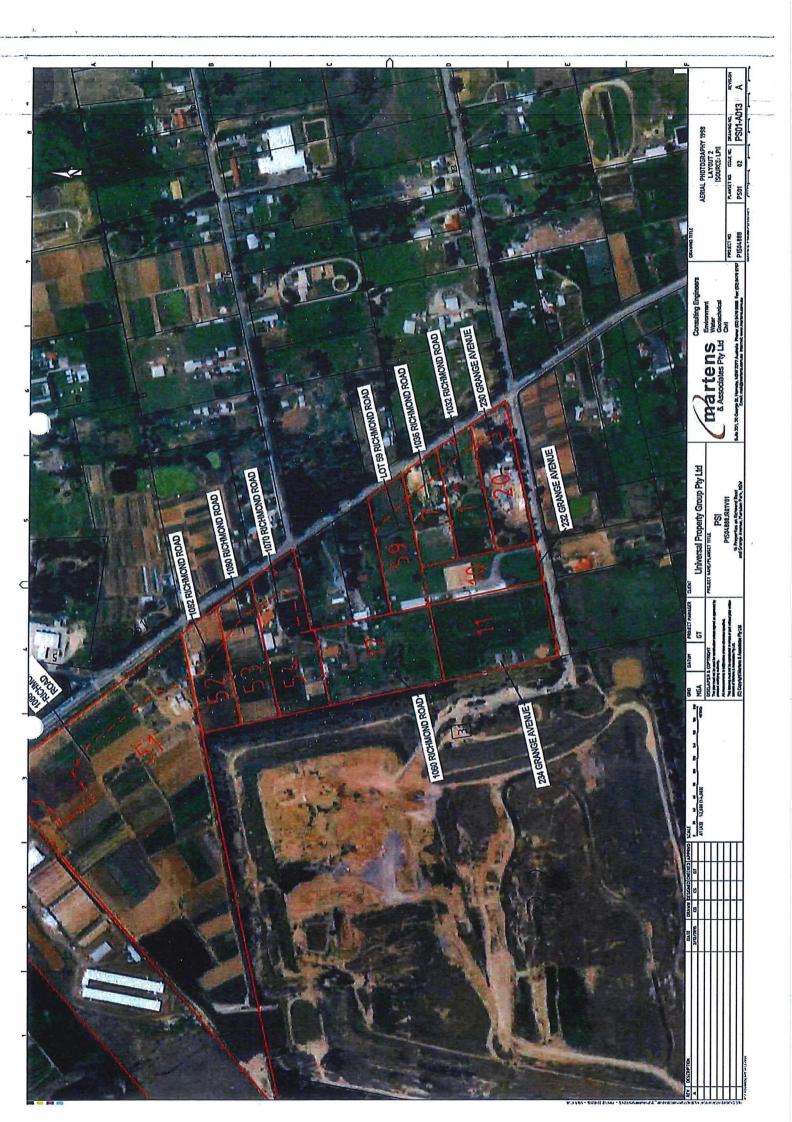


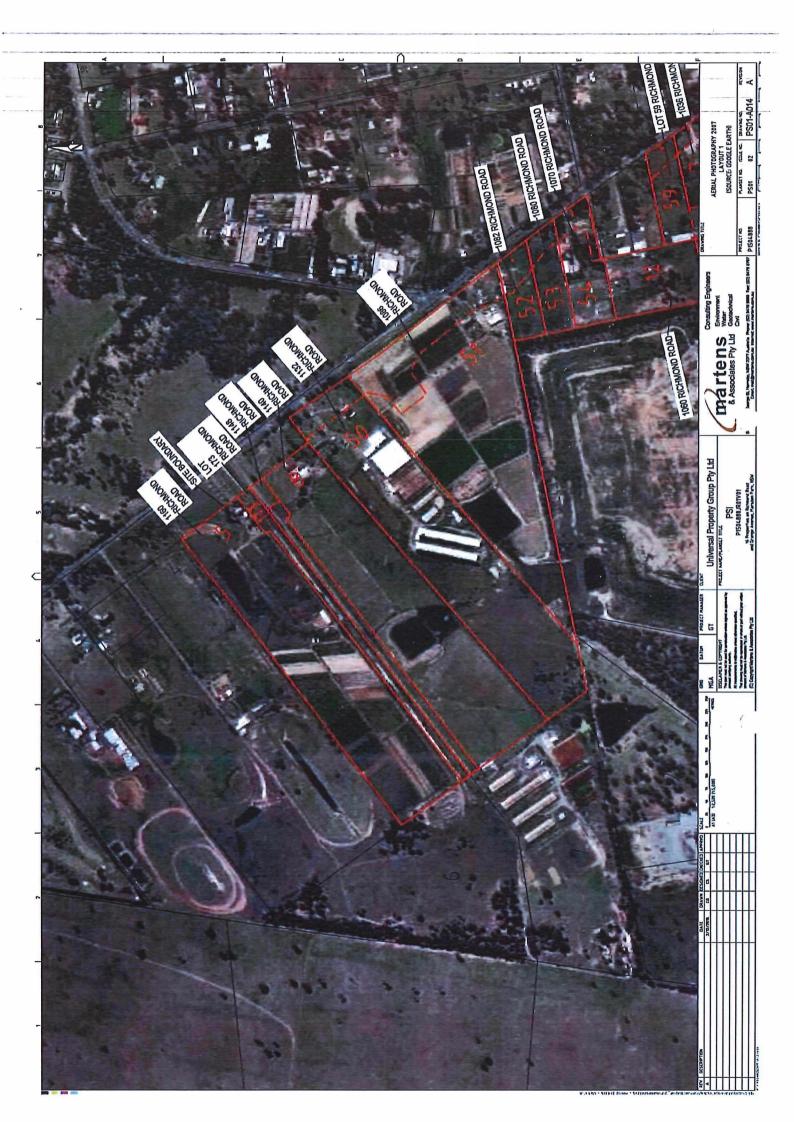


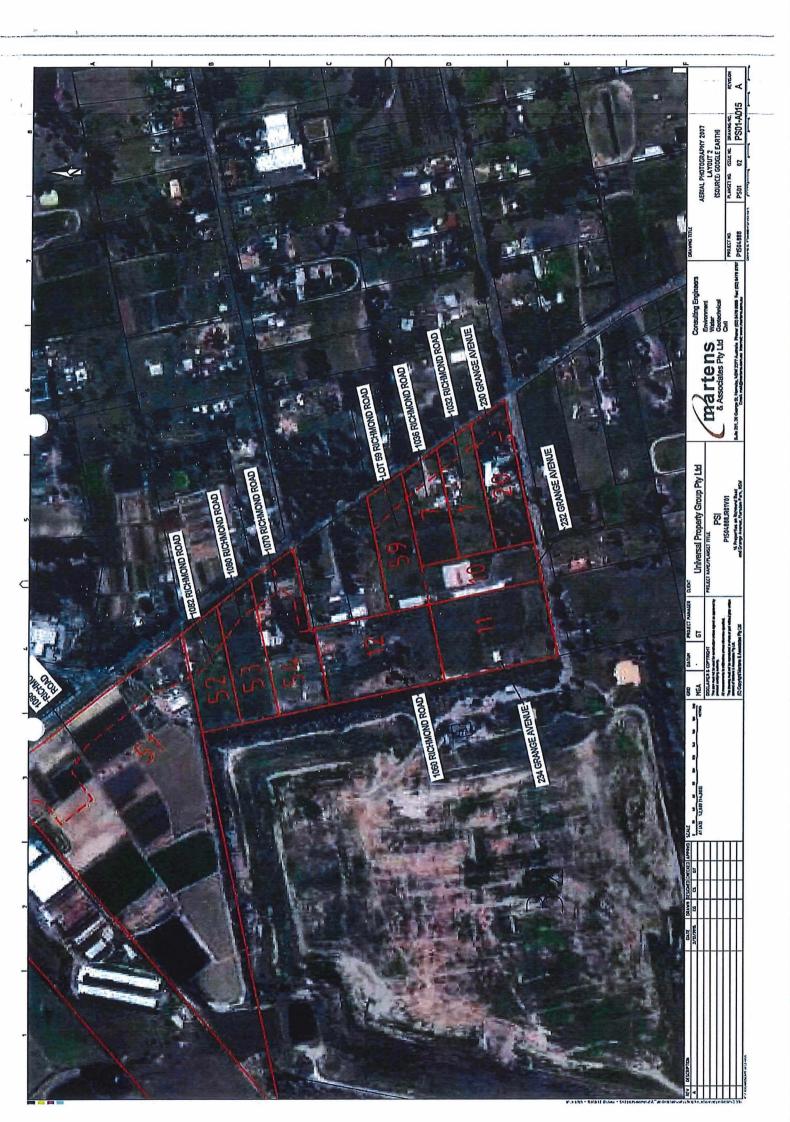


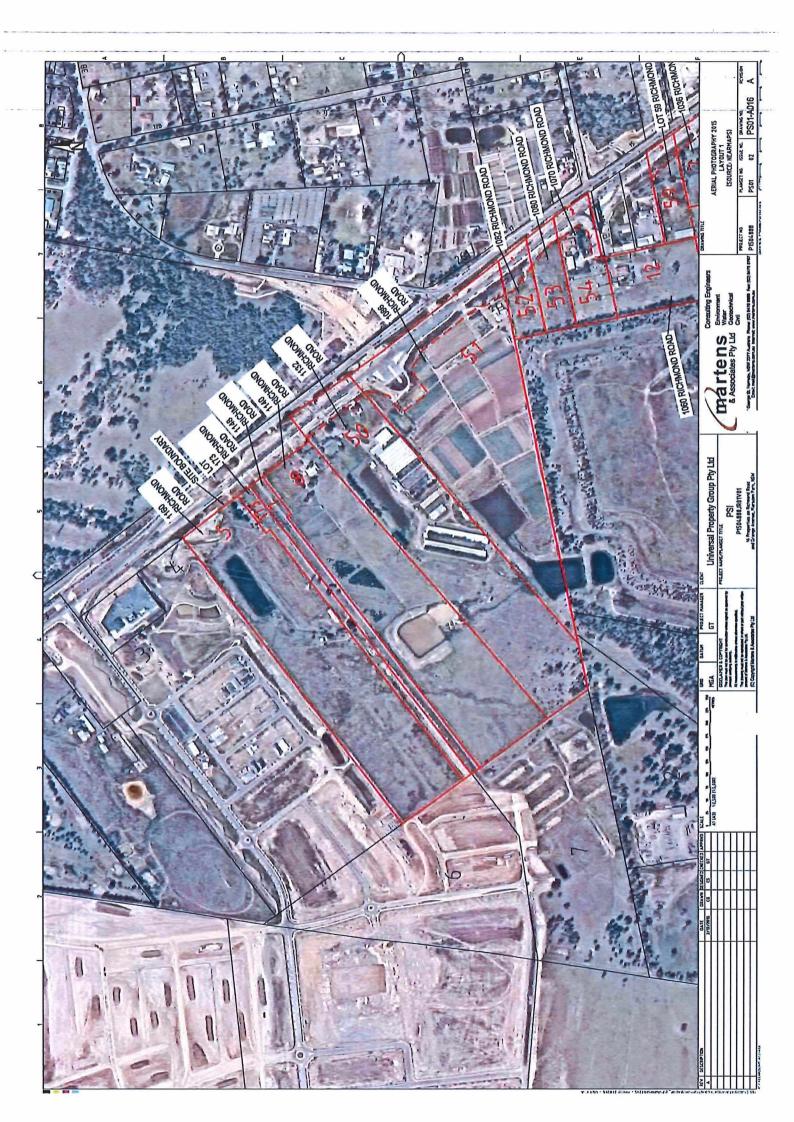












12 Attachment E – Blacktown City Council DA/BA/CC Correspondence

From:

Prem Siwan < Prem. Siwan @blacktown.nsw.gov.au>

Sent:

Tuesday, 29 September 2015 4:20 PM

То:

Carolyn Stanley

Subject:

Marsden Park sites

Attachments:

Marsden Park sites.docx

Hi Carolyn

Attached please find details of approvals for the 19 properties, where available.

Council Ref: GIPA 15/1431

Kind Regards

PREM SIWAN (MRS)
SENIOR GOVERNANCE INFORMATION OFFICER
PO Box 63 I Blacktown NSW 2148
62 Flushcombe Road I Blacktown NSW 2148
T 02 9839 6422 F 02 9831 1961
E prem.siwan@blacktown.nsw.qov.au I www.blacktown.nsw.qov.au

This email and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this email in error please notify the system manager.

This footnote also confirms that this email message has been swept for the presence of computer viruses.

Marsden Park sites

Details	Farm Machinery Shed (6.5 x 12m)	Dwelling		Treatment Shed		Poultry Shed	Relocation of a poultry shed & machinery shed to subject land	Resite chicken sheds	Extend egg packing room, covered egg loading dock and poultry shed	Poultry Shed	Existing house and kitchen farm on site	2 Storey dwelling	Screen enclosure	Dwelling & conversion of existing dwelling to rural workers dwelling		Detached Rural 2 Storey dwelling & Pergola	To level off fill (was dumped without permission) as per plans – to right hand side	Richmond Rd expansion/upgrade – north of Grange Ave to South Creek flood plain	
Approval Date	21 Jan 1981	25 Apr 1980	MARTIN AND THE RESERVE	3 Apr 1997		9 Nov 1984	6 Aug 1986	Not known	4 Feb 1993	4 Mar 1993	15 Oct 1996	8 Nov 1996	8 May 1997	7 Jun 1985		21 Jan 2000	5 Apr 2001	Not known	
Approval	DA-81-3452	BA-80-954	PERSONAL PROPERTY.	IA-97-1319		DA-84-5455	DA-86-6395	BA-86-2483	DA-92-401	BA-93-508	DA-96-375	BA-96-2954	BA-97-2142	DA-85-5747	1000 1000	DA-99-6619	S96-01-537 Modification to DA-99-6619	MC-13-410 (Ministerial)	
Superseded			Both Laboration		ALL PROPERTY AND ADDRESS.	Lot 9 DP 235714								Lot 10 DP		Lot 1 Sec M DP 193074			
Street Address	1160 Richmond Rd			1140 Richmond Rd		1132 Richmond Rd								1086 Richmond Rd		1082 Richmond Road			
DP	235714		李 明 一	235714	The second	1196583								1196583		1196583			
Lot	5			ω		50								51		52			

								7												
Noapprovelsfound		2 Storey dwelling	Machinery Shed	Dwelling	Shed	In-ground Pool		Dwelling		Shed	Community Centre – Palestinian Club		Alterations & Additions	Bedrooms & Bathroom	Dwelling	Landscape supply business & rural dwelling	Dwelling- Alts/Adds	Use of dwelling as an office	Awning	Commercial Dog Kennels
		18 Oct 1989	16 Jan 1990	25 Oct 1989	18 Jan 1990	16 Oct 1991		31 Aug 1983		10 May 1989	16 Feb 1993		15 Dec 1978	6 Feb 1979	4 Mar 1981	11 May 1988	15 Jul 1988	4 Jan 1984	13 Nov 2000	8 Jun 1965
	提供的研究的	DA-89-419	DA-89-677	BA-89-227	BA-89-4125	BA-91-3438		DA-83-4741		BA-89-920	DA-92-389		BA-78-4970	BA-79-355	DA-80-4431	DA-88-88	BA-88-2809	DA-83-4999	DA-00-5303	DA-65-392
	新文明 SING	Lot 2 DP 799814											Lot 10 Sec M DP 193074		Lot 2 DP 781151			Lot 8 Sec M DP 193074		
1080 Richmond Road		1070 Richmond Road					And the second second second	1060 Richmond Road		234 Grange Avenue			232 Grange Avenue		230 Grange Avenue			1032Richmond Road		
1196583	* 10 10 10 10 10	1196583					Control of the second	193074		199074 193074		The same of	70287		1191512			1200165		
53		54					Control of the contro	Lot 12 Sec M	Manager Street	Lot 11LSec M		***************************************	10		20			1		

7 6

	Re-sited dwelling	Re-sited dwelling	Use existing house & shed for church meeting for 20 families	New place of public worship building including 1 bedroom caretakers residence & car park		Dwelling house	Dwelling house		Rear Awning	Garage	In-ground Pool	Enclosed BBO/Enterlainment Area	2 -Storey Dual occupancy dwelling attached to existing rural dwelling	Additions to existing rural dwelling	The second statement of the fact of the second seco	Swimming Pool - archives	Brick Veneer Extensions		Rural Dwelling	Awning	Front Fence	In-ground Pool	Rural Shed – storage of show cars, tractor, tools & other vehicles/implements
	19 Dec 1988	10 May 1989	10 Aug 2001	26 May 2009	Marian Maria	17 Jul 1986		And the State of t	4 Mar 1981	21 Apr 1989	7 Apr 1999	16 Sep 1999	2 Jun 2004	17 Oct 2008	P. SHOP SHEETS		28 Feb 1978		16 Feb 2000	20 Sep 2001	17 Oct 2001	25 Mar 2002	26 Jun 2002
	DA-88-825	BA-89-1043	DA-00-5118	DA-05-3227	Maria Salika	DA-86-6423	BA-86-911	Actor and the sale	DA-81-644	BA-89-1307	DA-99-1237	DA-99-4980	DA-03-4643	DA-08-1961	8 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	DA-83-4965	BA-78-535	B. Carlotte Anna J.	DA-00-294	DA-01-3938	DA-01-4667	DA-02-516	DA-02-1799
A STATE OF THE STA															A CAMPACATE OF								
	1036 Richmond Road					24 Vine Street West			32 Vine Street West							40 Vine Street West			78 Vine Street West				
	741072					734813			193074							193074			802880				
	1					13			12. Sec K							11 Sec K			7			×	

From:

Prem Siwan < Prem.Siwan@blacktown.nsw.gov.au>

Sent:

Thursday, 15 October 2015 3:33 PM

To:

Gray Taylor

Cc:

Carolyn Stanley

Subject:

Lot 7 DP 1196729 Richmond Road, Marsden Park

Hi guys

Search results for subject property:

Lot	DP	Street Address	Superseded Lot/ DP	127 127	Approval Date	,			
7	235714	Richmond Rd, Marsden Park		BA-69- 2254	1969	Dwelling & Poultry Shed			
				DA-13- 1573	18 Sept 2013	DEMOLITION OF STRUCTURES ANCILLARY TO A POULTRY FARM			
				DA-13- 1635	28 Oct 2013	Earthworks - Remediation of land to implement the subject RAP			
		1		DA-14- 2280	27 Aug 2015	Road - Torrens title subdivision in 3 stages to create 76 residential lots, construction of new roads, dewatering of dams, earthworks and associated subdivision/civil works			
		e		DA-14- 2311	15 Sep 2015	Earthworks - Stages 12 and 12A - Bulk earthworks and Torrens title subdivision to create 69 residential lots, 2 residue lots, 2 super lots and public roads.			
				DA-14- 221	2 Mar 2015	Real Estate Advertising Sign			
			y.	DA-15- 815	15 Jun 2015	Exhibition Home - Erection of dwelling with fit out for use as a sales and marketing office (on proposed Lot 123 under DA-14-			

Council Ref: 122735, GIPA 15/1709

Kind Regards

PREM SIWAN (MRS)

SENIOR GOVERNANCE INFORMATION OFFICER PO Box 63 I Blacktown NSW 2148

62 Flushcombe Road I Blacktown NSW 2148 T 02 9839 6422 F 02 9831 1961

E prem.siwan@blacktown.nsw.gov.au I www.blacktown.nsw.gov.au

This email and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this email in error please notify the system manager.

This footnote also confirms that this email message has been swept for the presence of computer viruses.

From:

Prem Siwan < Prem.Siwan@blacktown.nsw.gov.au>

Sent:

Thursday, 15 October 2015 3:24 PM

To:

Gray Taylor

Cc:

Carolyn Stanley

Subject:

Lot 173 DP 1191299 Richmond Road

Hi guys

Search results for the subject property:

Lo	t DP	Street Address	Superseded Lot/ DP		Approval Date	Details
173	3 1191299	Richmond road		DA-14- 2311	15 Sep 2015	Earthworks - Stages 12 and 12A - Bulk earthworks and Torrens title subdivision to create 69 residential lots, 2 residue lots, 2 super lots and public roads.
			Lot 6/DP	DA-13-	22 Nov	Temporary
				DA-13- 1945	21 Mar 2014	Stages 12 and 12A - Bulk earthworks and Torrens
				DA-13- 2051	28 May 2014	Staged subdivision: Subdivision into 242 residential lots, 8 super lots & 5 residue lots with associated roads, drainage basins
				DA-13- 2350	31 Jan 2014	Installation of 3 temporary signage structures
				BA-73- 950	1973	Dwelling

Council Ref: 369246, GIPA 15/1709

Kind Regards

PREM SIWAN (MRS)

SENIOR GOVERNANCE INFORMATION OFFICER

PO Box 63 I Blacktown NSW 2148

62 Flushcombe Road I Blacktown NSW 2148

T 02 9839 6422 F 02 9831 1961

E prem.siwan@blacktown.nsw.gov.au I www.blacktown.nsw.gov.au

This email and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this email in error please notify the system manager.

This footnote also confirms that this email message has been swept for the presence of computer viruses.

From:

Prem Siwan < Prem. Siwan@blacktown.nsw.gov.au>

Sent:

Tuesday, 20 October 2015 4:29 PM

To:

Carolyn Stanley

Subject:

RE: Rest of the searches

Hi Carolyn

Please see details in red below:

From: Carolyn Stanley [mailto:cstanley@martens.com.au]

Sent: Tuesday, 20 October 2015 12:37 PM

To: Joanne Muscat; Prem Siwan Subject: FW: Rest of the searches

DK, I've just had another check of where we are at with regard to the searches, and they are nearly done!

We are waiting for information for the following lots:

Lot 59 DP 1196729 (Richmond Road, no street number) – no approvals found
Lot 15, Sec K, DP 193074 (Richmond Road, no street number) – Under Superseded Lots 14/15, Section K,
DP 193074 – DA-312 (1964) – Poultry Sheds
Lot 16, Sec K, DP 193074 (1029 Richmond Road) – Under Superseded Lots 16, Section K, DP 193074 - BA-

Lot 16, Sec K, DP 193074 (1029 Richmond Road) - Under Superseded Lots 16, Section K, DP 193074 - BA-65-1111 - Country Dwelling

You have both done remarkably well! Thank you!

Kind regards,

Carolyn Stanley Environmental Scientist (M.Sc., B.Sc., B.A.

Mortens & Associates Ply Ltd Suite 201, 20 George Street Hornsby, NSW 2077 P + 61 2 9476 9999 F + 61 2 9476 8767 E cstanley@martens.com.au www.martens.com.au

This message is intended for the addressee named and may contain confidential / privileged information. If you are not the intended recipient, please delete it and notify the sender. Views expressed in this message are those of the individual sender, and are not necessarily the views of Martens & Associates Pty Ltd. You should scan any attached files for viruses.

From: Carolyn Stanley

Sent: Tuesday, 20 October 2015 12:24 PM

To: 'Joanne Muscat' < Joanne. Muscat@blacktown.nsw.gov.au>